
Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik

Studiengang Künstliche Intelligenz

Masterarbeit

von

Philipp Stangl

Entwurf und Implementierung einer Pipeline zur
inkrementellen Konstruktion eines Wissensgraphen für

die Ermittlung von Betrug mit Kryptowerten

Design and Implementation of an Incremental Knowledge
Graph Construction Pipeline for Investigating

Crypto Asset Fraud

Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik

Studiengang Künstliche Intelligenz

Masterarbeit

von

Philipp Stangl

Entwurf und Implementierung einer Pipeline zur
inkrementellen Konstruktion eines Wissensgraphen für

die Ermittlung von Betrug mit Kryptowerten

Design and Implementation of an Incremental Knowledge
Graph Construction Pipeline for Investigating

Crypto Asset Fraud

Bearbeitungszeitraum: von 4. Oktober 2023
bis 3. April 2024

1. Prüfer: Prof. Dr.-Ing. Christoph P. Neumann

2. Prüfer: Prof. Dr. Fabian Brunner

Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik

Selbstständigkeitserklärung

Name und Vorname
des Studenten: Stangl, Philipp

Studiengang: Künstliche Intelligenz

Ich bestätige, dass ich die Masterarbeit mit dem Titel:

Entwurf und Implementierung einer Pipeline zur inkrementellen Konstruktion
eines Wissensgraphen für die Ermittlung von Betrug mit Kryptowerten

selbständig verfasst, noch nicht anderweitig für Prüfungszwecke vorgelegt, keine
anderen als die angegebenen Quellen oder Hilfsmittel benutzt sowie wörtliche und
sinngemäße Zitate als solche gekennzeichnet habe.

Datum: 3. April 2024

Unterschrift:

Ostbayerische Technische Hochschule Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik

Masterarbeit Zusammenfassung

Student (Name, Vorname): Stangl, Philipp
Studiengang: Künstliche Intelligenz
Aufgabensteller, Professor: Prof. Dr.-Ing. Christoph P. Neumann
Durchgeführt in (Hochschule): OTH Amberg-Weiden
Ausgabedatum: 4. Oktober 2023
Abgabedatum: 3. April 2024

Titel:

Entwurf und Implementierung einer Pipeline zur inkrementellen Konstruktion
eines Wissensgraphen für die Ermittlung von Betrug mit Kryptowerten

Zusammenfassung:

Kryptowerte sind digitale Vermögenswerte, die Blockchain-Technologie nutzen, um
Eigentum nachzuweisen und ein öffentliches Verzeichnis aller Transaktionen zu führen.
In dem sich entwickelnden Sektor der Kryptowerte bleiben die Betrugserkennung
und -vermeidung nach wie vor eine große Herausforderung. Herkömmliche Ansätze,
die sich auf die Analyse von Transaktionsgraphen stützen, bieten eine grundlegende
Perspektive, sind jedoch auf Blockchain-Transaktionsdaten beschränkt und erfassen
nicht die Semantik in Transaktionen. Folglich sind auch Methoden zur Erkennung und
Vermeidung von Betrug eingeschränkt, wenn es darum geht, Blockchain-Adressen mit
realen Entitäten zu verknüpfen und Muster betrügerischen Verhaltens von legalem
Verhalten zu unterscheiden. Als Antwort auf diese Einschränkungen wird in dieser
Arbeit der Kosmosis-Ansatz vorgeschlagen, der darauf abzielt, einen Wissensgraphen
schrittweise zu konstruieren, sobald neue On- und Off-Chain-Daten zur Verfügung
stehen. Während der Konstruktion wird die Semantik aus Transaktionen extrahiert und
Blockchain-Adressen mit realen Entitäten in Verbindung gebracht, indem Blockchain-
und Social-Media-Daten in einem Wissensgraphen vereint werden. Die Effektivität
und praktische Anwendbarkeit des Kosmosis-Ansatzes wird anhand einer Reihe
von realen Rug-Pulls demonstriert, die im Jahr 2021 stattgefunden haben. Dadurch
wird veranschaulicht, wie Kosmosis bei der Identifizierung und Verhinderung solcher
betrügerischen Aktivitäten helfen kann, indem es präventive Methoden ermöglicht,
die Erkenntnisse aus dem konstruierten Wissensgraphen nutzen.

Schlüsselwörter: Blockchain, Cyber Fraud, Knowledge Graph Construction

Abstract

Crypto assets are digital assets that use blockchain technology to prove ownership and
maintain a decentralized and public ledger of all transactions. In the rapidly evolving
landscape of crypto assets, the detection and prevention of fraud remain significant
challenges. Traditional approaches, primarily reliant on analyzing transaction graphs,
offer a foundational perspective but are constrained to on-chain data and fall short in
capturing the semantics of transactions. Consequently, fraud detection and prevention
methods based on transaction graphs are inherently limited in linking blockchain
addresses to real-world entities and discerning patterns of fraudulent behavior from
licit behavior. To address these limitations, this thesis proposes the Kosmosis approach,
which aims to incrementally construct a knowledge graph as new on- and off-chain
data (e. g., social media) becomes available. During construction, this method attempts
to extract the semantics in transactions and link blockchain addresses to real-world
entities by fusing data from the blockchain and social media in a knowledge graph. The
effectiveness and practical applicability of the Kosmosis approach are demonstrated
using a series of real-world rug pulls that occurred in 2021. This case illustrates how
Kosmosis can aid in identifying and preventing such fraudulent activities by enabling
preventative methods to leverage insights from the constructed knowledge graph.

Philipp Stangl Master’s Thesis

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement and Objectives . 3
1.3 Thesis Structure . 4

2 Methods 5
2.1 Ontology Development . 6
2.2 Prototype Design and Implementation . 7

2.2.1 Architecture Design . 7
2.2.2 Test-Driven Development . 9
2.2.3 Data Acquisition . 9

2.3 Evaluation Methodology and Dataset . 10

3 Fundamentals 11
3.1 Knowledge Graphs . 11

3.1.1 Labeled Property Graph . 12
3.1.2 Graphs Based on the RDF Data Model 13
3.1.3 Graph Model Selection . 14

3.2 Crypto Assets . 14
3.2.1 Crypto Asset Types and Use Cases 15
3.2.2 Minting Crypto Assets . 15
3.2.3 Fraud Categories . 16

3.3 Blockchain Technology . 17
3.3.1 Blockchain Data Structure . 17
3.3.2 Smart Contracts . 18

3.4 Blockchain Accounting . 19
3.4.1 Account-based Model . 19
3.4.2 Unspent Transaction Output Model 20

3.5 Privacy Techniques Used in Blockchain 21
3.5.1 Accounting Model Privacy . 21
3.5.2 Cooperative Obfuscation . 21

i

Philipp Stangl Master’s Thesis

4 State of the Art 24
4.1 Incremental Knowledge Graph Construction 24

4.1.1 Knowledge Extraction . 25
4.1.2 Knowledge Processing . 27
4.1.3 Ontology Development . 28

4.2 Graph-based Blockchain Data Mining . 29
4.2.1 Blockchain Address Deanonymization 30
4.2.2 Transaction Pattern Recognition 37
4.2.3 Illicit Activity Detection . 38

4.3 Summary . 39

5 Rug Pull Prevention Use Case 40
5.1 Past User Story . 41
5.2 From Transaction Graph to Knowledge Graph 43
5.3 Alternative User Story . 43
5.4 Technical Implications . 45

5.4.1 Competency Questions . 45
5.4.2 Functional Requirements . 46
5.4.3 Nonfunctional Requirements . 47

6 Kosmosis Approach 48
6.1 Architectural Overview of Kosmosis . 48
6.2 Knowledge Graph Ontology . 49

6.2.1 Blockchain Account Concept . 50
6.2.2 Blockchain Transaction Concept 51
6.2.3 Social Media Account Concept . 53
6.2.4 Real-World Entity Concept . 54

6.3 The Knowledge Graph Construction Pipeline 54
6.4 Blockchain Data-Processing Workflow . 56

6.4.1 Address Relation Extraction . 57
6.4.2 Address Tagging . 60
6.4.3 Blockchain Entity Resolution . 61
6.4.4 RDF Mapping . 66

6.5 Text-Processing Workflow . 68
6.6 Enrichment Data-Processing Workflows 70

6.6.1 Attributions . 70
6.6.2 External Knowledge Base . 70

6.7 Summary . 71

7 Evaluation 72
7.1 Fitness for Use . 72
7.2 Comparison with Transaction Graphs . 74
7.3 Limitations . 75
7.4 Summary . 76

CONTENTS ii

Philipp Stangl Master’s Thesis

8 Future Work 77
8.1 Implementational Features . 77

8.1.1 Ontology Learning . 77
8.1.2 Quality Assurance . 78

8.2 Rug Pull Detection and Prevention . 78
8.2.1 Rug Pull Detection Algorithms . 79
8.2.2 Rug Pull Prevention Methods . 79

9 Conclusion 80

A Supplementary Material 83

Bibliography 86

Glossary 96

List of Figures 100

List of Listings 102

List of Tables 103

CONTENTS iii

Philipp Stangl Master’s Thesis

Chapter 1

Introduction

Crypto assets are digital assets that use blockchain, as a type of distributed ledger
technology, to prove ownership and maintain a decentralized and public ledger of
all transactions. In the ever-evolving landscape of crypto assets, illicit activities have
surged in recent years. Chainalysis, a leading blockchain analytics firm, reported that
illicit transaction volume rose for the second consecutive year in 2022, reaching an
all-time high of $20.6 billion in illicit activity [1]. Excluding sanctions, figure 1.1 shows
that scams have had the highest illicit transaction value for five consecutive years. The
substantial increase in illicit transactions suggests that current measures to counter
fraud may be inadequate, and there is a necessity for better solutions to identify and
prevent fraud. This is especially important as scams pose a significant risk to investors
and undermine the integrity of the crypto asset sector.

Transaction graphs, the traditional approach for tracing and identifying fraudulent
behavior on blockchain networks fall short due to being limited to information present
in blockchain data. This limitation complicates the process of associating blockchain
addresses with real-world entities to identify fraudulent actors. However, knowledge
graphs (KGs) are increasingly recognized as a powerful means to integrate fragmented
knowledge from heterogeneous data sources into a graph of data to facilitate semantic
querying and reasoning. A KG provides a holistic view for identifying patterns and
hidden connections indicative of fraudulent activities in a highly connected dataset
[2]. The KG consists of semantically described entities, each with a unique identifier,
and relations among those entities using an ontological representation [3], [4]. Their
open-world nature allows for continually integrating new data from blockchains, social
media, or other knowledge bases. By leveraging these capabilities, KGs can enhance
the analysis of crypto asset fraud and aid in predicting future fraudulent activities.

This thesis proposes Kosmosis, an incremental KG construction pipeline, tailored to
construct a KG that serves as a knowledge base for downstream tasks used in the
investigation, detection, and prevention of crypto asset fraud. This pipeline integrates
new entities and relations from diverse data sources, including blockchains and social
media, to keep the graph up-to-date without reconstructing the entire KG.

1

Philipp Stangl Master’s Thesis

Figure 1.1: Total cryptocurrency value received by illicit addresses from 2017 to 2022.
Adopted from Grauer et al. [1]

1.1 Motivation

The predominant approach for identifying patterns indicative of fraudulent activity is
the transaction graph analysis within blockchain networks [5], [6], [7, pp. 21–24]. In
the context of crypto asset fraud investigations, transaction graph analysis follows a
three-step process [8]: (1) blockchain addresses are linked to real-world entities, (2) the
annotated graph is run through a graph-analysis framework, and (3) graph analytics
methods are used to understand the flow of funds and identify fraudulent behavior.
While effective, this approach presents the following three challenges:

1. The transacting parties are pseudonymous and only their blockchain addresses
are publicly known. This means that, although the transactions of a specific
address can be tracked, linking that address to a real-world entity is challenging,
since this approach is limited to information or patterns observable in blockchain
data (known as on-chain data).

2. This approach is only concerned with the following aspects of a transaction: (i)
the transferred asset, (ii) the quantity, and (iii) the sender and receiver. However,
the semantics of a transaction, such as what happened in a transaction that
caused the assets to get transferred, is not covered, thereby, limiting the depth
of analysis that can be conducted on crypto asset movements and the quality of
downstream tasks that can be developed based on this approach.

3. Unlike a KG, which is designed to understand and infer new facts based on the
relationships and attributes of the entities it contains, a transaction graph has
no ontology. This means it does not possess a structured framework or a set of
categories and concepts that could provide context or additional meaning to the
data it holds. Therefore, no reasoning or inference of new facts is possible with
the transaction graph, as it is purely descriptive and lacks the necessary semantic
framework to analyze the underlying causes or implications of the transactions
beyond their surface-level characteristics.

Chapter 1. Introduction 2

Philipp Stangl Master’s Thesis

1.2 Problem Statement and Objectives

To address the shortcomings of transaction graphs, a KG should be constructed that
integrates on-chain and off-chain data. This graph can semantically represent the
transacting parties on a blockchain and their interconnections. To ensure a high data
freshness, the construction should be automated and incremental (i. e., incorporating
new data as soon as it becomes available). To design and implement an incremental
knowledge graph construction pipeline, the following objectives define the scope and
direction of this master’s thesis.

Objective 1: How to incrementally construct a knowledge graph from on-chain data
and off-chain data?

It is imperative to establish a pipeline capable of integrating updates into the KG in
both batch- and streaming-like manners, thereby, maintaining high data freshness by
ensuring that the KG consistently reflects the most up-to-date information from the
blockchain and other sources. This approach should not entail a reconstruction of the
KG, but rather concentrate on integrating new information, avoiding the reprocessing
of data that is already incorporated. To commence the construction of the KG, it is
necessary to create an ontology that defines the structure and scope of the final KG. It
is expected the pipeline will require: (i) data ingestion, where raw data from various
sources is collected and prepared for further processing; (ii) knowledge extraction,
where relevant information is identified and extracted from the ingested data; and (iii)
entity resolution, involving the identification of entities across different data sources.

Objective 2: How to extract the semantics contained within blockchain transactions?

Transaction graphs commonly only display transactions with asset transfers and answer
questions such as “which” assets were transferred and “where” they were transferred.
Extracting the semantics contained in transactions is vital to uncovering sophisticated
fraudulent schemes that might otherwise go unnoticed. This gap should be addressed
by extracting the semantics of transactions and answering “why” and “how” assets
were transferred in a transaction. The extraction of the semantics is expected to be
achieved by decoding the input data of a transaction.

Objective 3: How to automatically link blockchain addresses to their real-world
entities during knowledge graph construction?

Transaction graphs consist solely of blockchain addresses and transactions. To identify
the real-world entities involved in these transactions, they require attributions data
on the application level. Attributions data is typically sourced from databases that
stores details about the real-world identities behind blockchain addresses By merging
this attribution data with the transaction graphs, each address in the graph can be
associated with information about the real-world entity it represents. It is expected
that linking blockchain addresses to real-world entities can be performed during KG
construction. As a result, the integrated data is stored in a real-world entity-adjusted
representation that allows users to see the actors involved in transactions.

Chapter 1. Introduction 3

Philipp Stangl Master’s Thesis

1.3 Thesis Structure

The structure of this thesis is organized into three parts, comprising nine chapters in
total. The organization of the content is depicted in figure 1.2.

1. Introduction
Motivation, Objectives

2. Methods
Applied Methods

3. Fundamentals
Knowledge Graphs, Blockchain

4. State of the Art
Incremental KG Construction, Graph Data Mining

6. Rug Pull Prevention Use Case
Rug Pull User Story, Technical Implications

5. Kosmosis Approach
Ontology, Architecture, Implementation

8. Future Work
Recommendations for Future Work

9. Conclusion
Summary of Results

7. Evaluation
Fitness for Use, Comparative Analysis, Limitations

I Prologue II Kosmosis III Epilogue

Figure 1.2: Thesis structure

The prologue to this thesis begins with the introduction in chapter 1, outlining the
motivation, objectives, and problem statement. Chapter 2, details the methodologies
employed in this work. Including the methods used for the ontology development,
prototype design and implementation, and evaluation. Chapter 3, lays the theoretical
groundwork, covering KGs, crypto assets, blockchain technology, and blockchain
accounting. This ensures a thorough understanding of the background necessary for
comprehending the subsequent chapters.

Kosmosis represents the core of the thesis, starting with chapter 4 (“State of the Art”)
which surveys current advancements in incremental KG construction and graph-based
blockchain data mining. Ideas from those two domains are constitutive to the design
and implementation of Kosmosis. Chapter 5 uses the rug pull prevention use cases to
highlight the technical implications and requirements for the Kosmosis architecture.
Subsequently, chapter 6 presents the Kosmosis approach, detailing the KG ontology
and the architecture of the KG construction pipeline. The evaluation of the software
prototype is presented in chapter 7. The assessment encompasses the fitness for use,
a comparative analysis of the KG versus transaction graphs, and a discussion about
current system limitations.

The epilogue concludes the thesis, with chapter 8, suggesting directions for further
research and development based on the findings of this work. Finally, chapter 9
summarizes the research findings and contributions, providing a comprehensive
overview of the study and its significance in the field of crypto asset fraud investigation.

Chapter 1. Introduction 4

Philipp Stangl Master’s Thesis

Chapter 2

Methods

This master’s thesis follows the three-cycle design science approach by Hevner [9]
that comprises three intertwined cycles: relevance, design, and rigor. The chosen
methodology guided the iterative development of the software prototype, from gaining
an initial understanding of the application domain to the design, implementation, and
evaluation of the incremental KG construction pipeline, as follows:

(1) Relevance Cycle: Given the rise in illicit crypto asset transactions, there is a
pressing need to investigate, detect, and prevent fraud in this domain. To gain
an in-depth understanding of the crypto asset fraud domain, a comprehensive
literature review was conducted, as a first step. This review aimed to ensure
the relevance of the primary artifact of this work, a software prototype, and its
applicability to real-world challenges. It covered various aspects, including the
historical context of crypto asset fraud, the challenges and current approaches to
its detection and prevention, and the technical intricacies of blockchain networks.
The primary sources for this review included peer-reviewed papers, whitepapers,
and industry reports. Insights derived from this cycle played a crucial role in
informing subsequent cycles.

(2) Rigor Cycle: The design of the incremental KG construction pipeline was based
on the theoretical foundations and the analysis of existing methods. Knowledge
gained from the literature was used to ensure the scientific rigor of the design.

(3) Design Cycle: In this internal cycle, the actual design was converted into a
working implementation. The design principles that guided it are outlined in
section 2.2. The pipeline was tested and evaluated using real and synthetic data
(section 2.3) to determine its effectiveness and efficiency. The findings from the
evaluation were reintroduced into the design to lead to its improvement. This
cycle was repeated until a satisfactory result was achieved.

5

Philipp Stangl Master’s Thesis

2.1 Ontology Development

Competency questions (CQs) guided the development of the ontology by defining the
requirements of the ontology and constraining the scope of knowledge represented
within it. CQs are formulated in natural language. They are specific, well-defined
questions that an ontology should be able to answer if it adequately covers the domain
it represents [10]. The CQs were derived from the rug pull prevention user story,
described in chapter 5, and formulated using the competency question-driven ontology
authoring methodology proposed by Ren et al. [11]. The authors outline a framework
for categorizing CQs by focusing on their semantic content rather than their linguistic
structure, utilizing a feature-based modeling approach. Their framework identifies the
following seven criteria for formulating CQs:

1. The question type criterion differentiates CQs based on the nature of their
expected answers, which can be a set of entities or values for selection questions, a
Boolean value for binary questions, or a numerical count for counting questions.

2. Element visibility determines whether the elements involved in a CQ, such as
class and property expressions, are explicitly stated or implied.

3. Question polarity indicates whether the question is framed in a positive or
negative manner, influencing how the query is understood and answered.

4. Predicate arity identifies the complexity of the main predicate in the question.
This can range from unary predicates for a single entity or value and binary
predicates concerning relationships between two entities or values to N-ary
predicates that involve relationships among multiple entities or values.

5. Relation type specifies the kind of relation involved in the CQ, with a focus on
object property relations or datatype property relations.

6. Modifiers impose restrictions on entities or values within the question to specify
concrete values, ranges, or comparative measures.

7. Domain-independent elements refer to elements that can occur across different
knowledge domains, such as temporal (time) and spatial (location) elements.

Protégé [12], an open-source ontology editor for building knowledge-based software,
was used to develop and refine the ontology for the KG Kosmosis constructs. It is
considered “the leading ontological engineering tool” [13] that offers a graphical user
interface to define ontologies. Further, it features deductive classifiers that apply
reasoning techniques to deduce the classification of instances or the relationships
between concepts that are not explicitly stated but can be logically inferred from the
existing axioms. Those classifiers can be used for consistency validation to ensure there
are no contradictions or conflicts within the definitions and relationships specified in
the ontology. For example, it would check that a class cannot be both a subclass and a
superclass of the same concept, as this would be logically inconsistent.

Chapter 2. Methods 6

Philipp Stangl Master’s Thesis

2.2 Prototype Design and Implementation

The design and implementation of the software prototype was grounded in object-
oriented programming (OOP) and object-oriented design (OOD) principles, with
Python serving as the programming language. Python was chosen for its extensive
ecosystem of libraries for data engineering and text processing. This included RDFLib
[14], a library for working with Resource Description Framework (RDF), as well as
Spacy [15] and the Natural Language Toolkit (NLTK) [16] for the processing of natural
language text.

2.2.1 Architecture Design

OOP allows for decomposing the KG construction pipeline into smaller, manageable
components (objects) that can be developed, tested, and maintained independently.
Additionally, Unified Modeling Language (UML) diagrams were employed to design
and visualize the system architecture and the interactions among these components.
The design of the prototype utilized OOD principles to shape the system’s architecture.
To achieve this objective, the design uses three specific patterns: the singleton and
factory method from the category of creational design patterns, and the strategy
pattern from the category of behavioral patterns.

Singleton

The singleton pattern (figure 2.1) is a creational design pattern that ensures a class
has only one instance and provides a global point of access to that instance [17].
This pattern involves a class that is responsible for creating just one instance of
itself, controlling how it is created, and providing a way to access it globally. The
implementation of this pattern typically involves a private constructor to restrict
instantiation, a static method to provide access to the instance, and a static member
variable to hold the single instance. This pattern is useful when exactly one instance
of a class, which should be accessible globally, is needed, for instance, for logging, or
database connections.

Singleton

- instance: Singleton

- Singleton()

+ getInstance(): Singleton

Client

+ main(): void

if(instance == null){
 instance = new Singleton()
}
return instance

Figure 2.1: UML class diagram of the singleton pattern

Chapter 2. Methods 7

Philipp Stangl Master’s Thesis

Factory Method

The factory method (figure 2.2) is a creational design pattern that provides an interface
for creating instances of a class, but allows subclasses to alter the type of objects that
will be created [17]. This pattern defines an interface for creating objects, but allows
subclasses to decide which class to instantiate. Implementation involves a method in a
superclass that creates objects, which can be overridden by subclasses to create specific
types of objects. It is useful when a class cannot anticipate the class of objects it must
create or when a class intends its subclasses to specify the objects it creates.

Product p = createProduct()
p.doStuff()

Creator

...

+ someOperation()

+ createProduct(): Product

ConcreteProductA

...

<<Interface>>
Product

+ doStuff()

ConcreteProductB

...

ConcreteCreatorA

+ createProduct(): Product

ConcreteCreatorB

+ createProduct(): Product

return new ConcreteProductA()

Figure 2.2: UML class diagram of the factory method pattern

Strategy

The strategy pattern (figure 2.3) is a behavioral design pattern that defines a family
of algorithms, encapsulates each one, and makes them interchangeable [17]. This
pattern allows a client class to choose from a family of algorithms at runtime. It
involves creating a strategy interface defining the common methods for all supported
algorithms, concrete strategy classes implementing these algorithms, and a context class
that uses the strategy interface to execute the selected algorithm. This pattern helps to
dynamically select an algorithm at runtime or switch between related algorithms.

strategy.execute()

Context

- strategy

+ setStrategy(strategy)

+ doSomething()

ConcreteStrategy

+ execute(data)

<<Interface>>
Strategy

+ execute(data)

Client

+ main(): void

strategy = new SomeStrategy()
context.setStrategy(strategy)
context.doSomething()
...
other = new OtherStrategy()
context.setStrategy(other)
context.doSomething()

Figure 2.3: UML class diagram of the strategy pattern

Chapter 2. Methods 8

Philipp Stangl Master’s Thesis

2.2.2 Test-Driven Development

The implementation process adhered to test-driven development (TDD) principles,
where test cases were written prior to implementing functionality. This approach
ensured that each component of the pipeline was rigorously tested for correctness and
reliability. It involved creating unit test cases before the implementation, following an
iterative process of writing failing tests, writing the minimum code to pass the test,
and then refactoring the code to improve its structure and efficiency without changing
its external behavior.

In TDD, developers follow a cycle of adding a test to the suite (red), writing code to
pass the test (green), and refactoring the code while keeping tests green. This iterative
process helps in creating optimized code, understanding client requirements better,
and simplifying the addition and testing of new functionalities during development
stages. Using tools like Pytest [18] facilitated the TDD approach by providing a robust
framework for writing and executing tests. This method encourages cleaner, more
maintainable code and fosters a development environment where features can be
added or changed with confidence, knowing that the test suite will immediately catch
regressions or errors.

2.2.3 Data Acquisition

Data was acquired from the following publicly available data sources for the initial
and incremental construction of the KG:

• Blockchain data was sourced from Quicknode [19] archive nodes. An archive
node enables queries of historical data by storing all historical blockchain states
since the genesis block (i. e., the first block of the blockchain). This includes
access to all historical states of smart contracts as well as account balances. For
on-chain data from Bitcoin, the Blockbook RPC add-on for archive nodes was used
to retrieve historical UTXO data.

• Social media data was ingested from the X Filtered stream [20] API endpoint to
collect posts related to specific user accounts from the social media platform X.

• Attributions were sourced from community curated datasets from blockchain
explorers.1 Attributions data,2 associating blockchain addresses to real-world
entities, was stored in a PostgreSQL [22] database.

• External knowledge was integrated from the Golden KG via the Fact API [23]
to enrich the KG entities with supplementary information such as locations,
investors, and funding history, as well as official website and social URLs for
organizations. It provides structured data on various entities, including public
figures and organizations with a focus on the tech and crypto asset sector.

1 Blockchain explorers (e. g., Etherscan [21]) are web tools designed to facilitate the exploration of
blockchain networks. These tools allow users to efficiently search, filter, and sort transactions, blocks,
accounts, and other information in the blockchain network.

2 Example: 0x575 (blockchain address), Treasury (address label), Tether (real-world entity)

Chapter 2. Methods 9

Philipp Stangl Master’s Thesis

2.3 Evaluation Methodology and Dataset

To evaluate the completeness of the ontology, competency questions were employed
as a methodological tool. These questions were formulated to validate the ability of
the ontology to handle specific queries and operations that it is expected to perform.
The satisfactory ability to answer these competency questions serves as a validation
check, ensuring that the ontology meets the necessary criteria for effectiveness and
completeness [10]. This method provides a practical test, verifying the ontology’s
capability to function as intended in real-world applications.

A custom dataset was created for the technical evaluation of the Kosmosis prototype,
particularly for the use case of rug pull prevention. This dataset comprised historical
blockchain data spanning from October 7, 2021, to November 23, 2021. The data was
downloaded from Ethereum, Polygon, and Bitcoin archive nodes accessed through
Quicknode. Table 2.1 illustrates the scope and scale of the dataset gathered from
historical blockchain data between October 7, 2021, and November 23, 2021. It lists
the total number of blocks mined on each blockchain alongside the total number of
transactions that have been mined within those blocks.

Blockchain # Blocks # Transactions

Bitcoin 7152 13,218,345
Ethereum 305,384 61,891,925
Polygon 1,800,221 179,122,984

Table 2.1: Blockchain dataset used for evaluation

The attributions database was populated with data from blockchain explorers that
provide community curated datasets. For the Ethereum blockchain, data was sourced
from the Etherscan Label Cloud [21] with labels for 347,631 addresses across 197 distinct
categories. Similarly, for the Polygon blockchain, the database was enriched with
information from the Polygonscan Label Cloud [24]. This addition comprised labels for
4,997 addresses, distributed over 138 categories. Unfortunately, an equivalent dataset
for Bitcoin that included at least one labeled address for this use case was not available.

Finally, social media posts were obtained from the full-archive search endpoint 3 of the
X API, focusing on content posted by the user Homer_eth. A total of 92 posts were
collected, all of which originated within a predetermined timeframe. The data extracted
from these posts included several key elements: post.id, which serves as a unique
identifier for each post; post.created_at, indicating the time and date each post was
created; and author information such as user.id, user.name, and user.username.

3 https://developer.twitter.com/en/docs/twitter-api/tweets/search/quick-start/full-a
rchive-search

Chapter 2. Methods 10

https://developer.twitter.com/en/docs/twitter-api/tweets/search/quick-start/full-archive-search
https://developer.twitter.com/en/docs/twitter-api/tweets/search/quick-start/full-archive-search

Philipp Stangl Master’s Thesis

Chapter 3

Fundamentals

This chapter introduces the foundational concepts and technologies underpinning
the research for Kosmosis. Section 3.1 begins by defining KGs and their significance
for organizing and interpreting highly connected datasets. Subsequently, section 3.2
provides an overview of crypto assets and the underlying blockchain technology
(section 3.3) that enables their existence and transactions. To provide a background
for blockchain address de-anonymization methods discussed in subsequent chapters,
section 3.4 outlines blockchain accounting principles, and section 3.5 delineates privacy
techniques used in blockchain.

3.1 Knowledge Graphs

The core idea of a KG is to represent real-world entities and their interrelationships in
a structured and machine-understandable way. KGs aim to capture the meaning and
context of information by focusing on what they represent and how they relate. Data
is organized as nodes (entities) connected by potentially cyclical edges (relationships)
forming a graph structure. These entities can be anything from physical objects and
people to abstract concepts and events. KGs offer a semantically rich data model by
encoding semantics, meaning the relationships between entities carry specific meanings.
Employing a graph-based knowledge abstraction allows maintainers to postpone the
definition of a schema, allowing the data and its scope to evolve. As a result, their
application is particularly useful for capturing incomplete knowledge.

Cross-domain KGs, such as DBpedia [25] or the Google Knowledge Graph [26], are
created to represent general knowledge about the world. They span multiple areas
of knowledge, offering a broad overview and linking diverse subjects. For instance,
the Google KG integrates data from a variety of sources (e. g., web content), allowing
Google to deliver more relevant and informative search results. Domain-specific KGs,
conversely, focus on a particular field, such as finance, providing in-depth, expert-level
knowledge tailored to specific needs [27]. An application of domain-specific KGs in
finance is to detect unusual transaction patterns that may indicate fraudulent activities.

11

Philipp Stangl Master’s Thesis

On the methodology of construction, KGs can be categorized into on-the-fly, pre-, and
incrementally constructed KGs. On-the-fly constructed KGs are dynamically generated
in response to specific queries or tasks, ensuring up-to-date information and flexibility
in handling diverse queries. In contrast, a pre-constructed (or static) KG is built in
advance and offers the advantage of stability and extensive validation, making them
reliable sources for consistent queries over time. Incremental construction of KGs is an
emerging methodology that aims to efficiently update the KG when the underlying
data sources change, even with minor updates, without starting from scratch.

The term Knowledge Graph itself was made popular with the Google Knowledge Graph
announcement in 2012 [26]. Today, there is still disagreement over what constitutes a
KG [28]–[31]. Across literature [3], [4], a KG is commonly referred to as a knowledge
base with semantically described entities, each with a unique identifier, and relations
among those entities shown in an ontological representation. To structure the data, a
KG uses a graph-based data structure, such as the labeled property graph (LPG) [32],
or a graph built from RDF [33] terms.

3.1.1 Labeled Property Graph

LPG-based knowledge graphs organize and manage knowledge using graph databases,
such as neo4j [32]. In the LPG model, both nodes (entities) and edges (relationships)
can possess a set of properties as well as labels. Properties, defined as key-value pairs,
characterize nodes and relationships, whereas labels serve to categorize the nodes
and edges according to their roles or types within the domain being modeled. For
instance, in a social network graph, nodes could represent users, with labels such as
“User,” while edges representing the relationships between users might be labeled as
“follows.” Additionally, nodes and edges can carry multiple labels, further detailing
their roles and relationships within the modeled domain.

Figure 3.1 shows an example of John Doe, who owns a bank account, modeled as an
LPG. The node “John Doe” has the label “Customer” and two properties attached: his
email j@doe.com and a phone number +49 111 22. The other node, “A520,” has the
label “Bank Account” and two properties describing that it is a checking account with
a balance of 1000.00. Both nodes are connected by an “ownership” relationship that
describes that John Doe has owned the bank account since January 1, 2022.

email = j@doe.com
phone = +49 111 22

John Doe : Customer

type = "checking"
balance = 1000.00

A520 : Bank Account

since = "2022-01-01"

ownership

Figure 3.1: John Doe bank account example modeled as LPG

An LPG can be formally defined as a tuple (N, E, L, P, U, e, l, p), where N is a set of
node ids, E is a set of edge ids, L is a set of labels, P is a set of properties, and U is
a set of values. e : E→ N × N maps an edge id to a pair of node ids; l : N ∪ E→ 2L

maps a node or edge id to a set of labels, and p : N ∪ E→ 2P×U maps a node or edge
id to a set of property-value pairs [31].

Chapter 3. Fundamentals 12

Philipp Stangl Master’s Thesis

Querying in LPG-based databases is facilitated through specialized query languages
such as Cypher [34]. These query languages are designed to efficiently navigate
and manipulate the structure of the graph, taking full advantage of the database’s
optimization for graph traversals. The use of these query languages allows for the
execution of sophisticated queries that can span multiple nodes and relationships,
enabling the extraction of complex patterns and insights from the graph.

Graph databases optimize for read operations by employing index-free adjacency
[35]. This means that in a graph database, relationships between nodes are stored
directly as pointers, allowing for efficient traversal of connections without the need
for indexes, resulting in a O(1) lookup cost. This design choice enhances the speed
of read operations in graph databases, especially when dealing with complex and
interconnected data structures. However, [36] shows that this property is only beneficial
in scenarios where the database contains a single, large graph.

3.1.2 Graphs Based on the RDF Data Model

RDF is used as the data exchange format for the semantic web. In RDF, entities
are uniquely identified through Uniform Resource Identifiers (URIs), facilitating the
reference to resources within both global and local namespaces.

A KG that represents as a set of RDF triples is known as an RDF graph. Each RDF
triple (s, p, o) is an ordered set of the following RDF terms [37]: a subject s ∈ U ∪ B,
a predicate p ∈ U, and an object o ∈ U ∪ B ∪ L. An RDF term is either a URI u ∈ U,
a blank node b ∈ B, or a literal l ∈ L. Unlike the LPG, standard RDF has no direct
way to express edge properties. Instead, RDF can aggregate information into named
graphs, transforming traditional triples into quads (s, p, o, n) where n is a named graph.
Alternatively, RDF makes edge properties possible through extensions like RDF-star,
which allow for statements about statements in a graph. Entities and relations of an
RDF graph are semantically described using an ontology [3]. Gruber [38] defines an
ontology as “a formal, explicit specification of a shared conceptualization.” It defines
the types of entities that exist in a domain and the relationships between them. They
use a vocabulary, that is a collection of terms or labels that are used to describe a
specific domain or subject area. The schema definition capabilities of RDF are further
expanded by RDF Schema (RDFS) and the Web Ontology Language (OWL), which
enable expressive semantic structures. They enable the definition of classes, properties,
and hierarchies, and enrich RDF with semantics through axioms, thereby describing
the structure of RDF instances and adding inferential capabilities.

For data querying and manipulation, RDF utilizes SPARQL [39], a standardized query
language, with SPARQL-star introduced for querying within the RDF-star framework.
RDF supports a variety of standard exchange formats, including N-Triples, N-Quads,
Turtle, RDF/XML, and JSON-LD, facilitating diverse data interchange scenarios.

RDF does not provide mechanisms for ensuring data integrity or enforcing shape
constraints. To validate the semantic correctness, solutions like the Shape Constraint
Language (SHACL) [40] or Shape Expressions (ShEx) [41] are required.

Chapter 3. Fundamentals 13

Philipp Stangl Master’s Thesis

SHACL prioritizes SPARQL for validation, with an extension mechanism, and allows
expressing constraints on the content, structure, and meaning of a graph, including
conditions on property values. ShEx, on the other hand, was designed de novo to meet
specific use cases and defines schemas in terms of a grammar [42].

Figure 3.2 shows the same example described in the previous section but this time
arranged as RDF terms and visualized in the form of a graph. “John Doe” and
“A520” are instances of “Customer” and “Bank Account,” respectively. One difference
compared with the LPG is that the ownership relationship is represented as a named
graph, which allows the relationship itself to have the property “since.”

sincerdf:type

phone email

John Doe

rdf:type

type balance

A520

Customer

j@doe.com+49 111 22 checking 1000.00

Bank Account2022-01-01

ownership

Figure 3.2: John Doe bank account example modeled as RDF graph

3.1.3 Graph Model Selection

The decision between the use of RDF and LPG depends on the use case of the final
KG. Despite the LPG being optimized for queries, especially those requiring deep
traversal of the graph (e. g., tracing the flow of assets through multiple transactions or
addresses), this work is motivated by an emphasis on semantic relationships between
entities in the final KG. This makes them well-suited for encoding, inferring, and
querying relationships and metadata related to crypto assets and transactions. Such
functionality is particularly useful in identifying patterns and relationships indicative
of fraud, such as identifying suspicious transactions that deviate from typical patterns.
Therefore, for the remainder of this thesis, the term KG will refer to a graph that is
based on the RDF data model.

3.2 Crypto Assets

Crypto assets are digital assets that use blockchain technology to prove ownership and
maintain a decentralized and public ledger of all transactions. This section starts by
outlining the various types of crypto assets along with their use cases, as detailed in
section 3.2.1. Following this, there is a brief description of how new assets are created,
a process known as minting, in section 3.2.2. Concluding, the different categories of
crypto asset fraud types are examined in section 3.2.3.

Chapter 3. Fundamentals 14

Philipp Stangl Master’s Thesis

3.2.1 Crypto Asset Types and Use Cases

There are three distinct types of crypto assets (depicted in figure 3.3), each with unique
characteristics and use-cases. The most well-known type is cryptocurrencies, like
Bitcoin [43], Ethereum [44], and Solana [45]. They function as digital currencies and
are used for storing or transferring monetary value. Fungible tokens (short: tokens),
another type of crypto asset, are interchangeable units representing various utilities
or assets within a blockchain ecosystem. They often play a vital role in Decentralized
Finance (DeFi) protocols that provide users with access to a product or service on a
blockchain-based platform. They can be designed to provide utility (e. g., Chainlink
[46]), or to minimize volatility by pegging their market value to an external reference,
known as stablecoins, like the US dollar in the case of the USD Coin [47]. Lastly, Non-
Fungible Tokens (NFTs) are unique digital assets that prove ownership and authenticity
of digital, such as CryptoPunks [48], or real-world assets [49]. Unlike cryptocurrencies
and tokens, each NFT has a distinct value and is non-interchangeable.

Cryptocurrencies Tokens

Non-Fungible

Fungible

Bitcoin

Cryptokitties

ChainlinkUSD Coin

CryptoPunksSolana

Ethereum

Figure 3.3: Overview of different types of crypto assets

Crypto asset trading is primarily conducted through three types of marketplaces: (1)
centralized exchanges (e. g., Coinbase [50]) serve as intermediaries between buyers
and sellers, enabling the trading of cryptocurrencies and fungible tokens. In contrast,
(2) decentralized exchanges (e. g., Uniswap [51]) operate without a central authority,
allowing users to trade directly with one another through automated smart contracts on
blockchain networks. Additionally, (3) NFT marketplaces (e. g., OpenSea [52]) provide
online platforms for the buying, selling, and trading of NFTs.

3.2.2 Minting Crypto Assets

Minting is the process of creating new crypto assets on a blockchain network without
the interference of central authorities. Tokens are typically minted by the creator either
at the inception of the project or progressively over time. This process is often governed
by predefined rules or algorithms embedded within the smart contracts of the project.

Chapter 3. Fundamentals 15

Philipp Stangl Master’s Thesis

In contrast, NFT minting involves other individuals besides the token creator, referred
to as token minters. They engage by invoking a specific function within a smart contract,
in the ERC-721 token standard, called mint. This action results in an increase in the
supply of the NFTs and simultaneously assigns these minted tokens to the blockchain
address of the minter. The mechanism of minting NFTs often involves utilizing a
dedicated minting website. Here, prospective minters or investors are required to
invest a predetermined amount, as set by the creator, to initiate the minting process.
This investment grants them the ability to mint one or multiple NFTs, depending on
the terms set forth in the smart contract. This process not only facilitates the creation
of new NFTs but also serves as a means of transferring ownership directly from the
creator to the NFT minter.

3.2.3 Fraud Categories

Crypto asset fraud encompasses a range of illicit activities that undermine the integrity
and security of the crypto asset market. Fraudulent behavior, in crypto and traditional
financial markets, is considered to be any suspicious activity that is unauthorized,
distinguishing it from scams, which are deceptive transactions that victims may
inadvertently authorize. The major categories of crypto asset fraud include scams,
protocol hacks, money laundering, ransomware payments, and darknet markets. Each
category is outlined in table 3.1 along with a brief description.

Name Description

Darknet Markets Darknet markets are websites that facilitate the sale of illicit
goods and services. Cryptocurrency, valued for its perceived
anonymity and efficiency in international transactions, is used
as the means of payment on the markets [1, pp. 70–84], [53].

Money Laundering The process of disguising the origins of ill-gotten funds that
come from criminal activities, making it seem as if the funds
originate from lawful sources [54, pp. 10–11].

Ransomware This form of cyberattack targets individuals and organizations,
encrypting critical files, databases, and applications, rendering
them unusable until a ransom is paid to obtain the decryption
key. Victims are coerced into paying cybercriminals to regain
access to their data or systems, usually with cryptocurrencies
like Bitcoin to make tracking difficult [1, pp. 26–40].

Scams Scammers promote fake investment opportunities and give-
aways or impersonate influential individuals or companies to
defraud their victims. In another type of scam, called rug pull,
creators of a blockchain project suddenly abandon it and take
investors’ funds with them. This type of scam is extensively
discussed in recent literature [55]–[58].

Table 3.1: Overview of crypto asset fraud categories

Chapter 3. Fundamentals 16

Philipp Stangl Master’s Thesis

3.3 Blockchain Technology

Blockchain technology is based on the principles of immutability, decentralization,
transparency, and cryptographic security and has seen various applications in recent
years. For instance, in the financial sector (e. g., [43], [44]), or supply chain management
(e. g., using a single blockchain [59], or using multiple, interoperable blockchains [60],
[61]). The following section offers an introduction to blockchain technology, beginning
with the blockchain data structure in section 3.3.1. Proceeding with the concept of
smart contracts, section 3.3.2 outlines their mechanisms and applications.

3.3.1 Blockchain Data Structure

A blockchain is a data structure whose elements, called blocks, are linked together to
form a chronologically-ordered chain of blocks [62]. Figure 3.4 illustrates that each
block comprises two parts: a body and a header. The body of the block contains a
set of transactions. A transaction typically involves the transfer of assets between a
sender and a receiver. These participants are represented by addresses, serving as
unique alphanumeric identifiers that enable users to send and receive digital assets
on a blockchain network. A blockchain address is typically derived from a public
key (pubkey), which itself is generated from a private key through cryptographic
algorithms. For instance, Bitcoin uses ECDSA for key generation and the SHA-256 and
RIPEMD160 hashing algorithms to generate the Bitcoin address from the pubkey [63].
Further, the block body is used to generate a unique identifier called the block hash.
The block header contains a reference to its immediate predecessor, the parent block.

Blockchain nodes, including archive and full nodes, are utilized to access the blockchain.
Archive nodes store all historical states of a blockchain from the genesis block to the
present. This means that archive nodes keep a record of all balances and contracts
at every block, not just the current state. These types of nodes are primarily used
for data analysis and verification purposes. Full nodes, on the other hand, store and
maintain the latest block data (specifically, the most recent 128 blocks) on disk [64].
Their purpose is to validate blocks and transactions against the consensus rules of the
blockchain to ensure the integrity of all blocks and states.

Block Header

Block Body

Parent Block
Hash

Block i-1

TX TX TX

Block Header

Block Body

Parent Block
Hash

Block i

TX TX TX

Block Header

Block Body

Parent Block
Hash

Block i+1

TX TX TX

Figure 3.4: Blockchain datastructure. Adapted from Zheng et al. [62]

Chapter 3. Fundamentals 17

Philipp Stangl Master’s Thesis

3.3.2 Smart Contracts

Smart contract platforms are a subset of blockchains that enable the development of
decentralized applications through smart contracts. Through smart contacts, which are
executable source codes that enforce the terms and conditions of particular agreements,
a smart contract platform like Ethereum facilitates the development of decentralized
applications [65]. Once deployed on the blockchain, the smart contract is assigned an
address where the code resides and cannot be altered or tampered with. By writing
custom smart contracts, developers can create and manage tokens that adhere to the
ERC-20 [66] or ERC-721 (NFT) [67] standard [65]. An Application Binary Interface
(ABI) specifies the functions and data structures exposed by a smart contract, allowing
external applications to understand the capabilities of the contract. Further, an ABI
defines a format for encoding and decoding data that is passed between smart contracts
and external applications. This ensures a standardized way to exchange information.

The Ethereum blockchain operates with the Ethereum Virtual Machine (EVM) as a
fundamental building block, serving as the execution environment for smart contract
code. Smart contracts, primarily written in a high-level language such as Solidity,
undergo compilation into EVM bytecode. This bytecode is the executable format used
by the EVM to enact smart contract functions. To interact with this bytecode, a contract
ABI is utilized, which acts as a bridge between the high-level language and the low-
level bytecode. In this context, an EVM disassembler plays a crucial role; it reverses
the bytecode back into a more readable format, aiding developers in understanding
and analyzing the code deployed on the Ethereum blockchain. Figure 3.5 shows
the processes involved in deploying smart contracts to the Ethereum blockchain and
reading contract data from it. The left side shows the compilation and deployment
process of a smart contract, and the right side depicts an interaction with the contract.
An example for a contract creation transaction is provided in listing A.1 and A.2.

IDE/
Front-end

Ethereum
VM

Ethereum
Blockchain

1. Compile

Solidity Source Code

ABI

2. Deploy

Bytecode Opcodes

Block
n

Web Application

4. Decode

ABIBytecode

3. Receive

Block
n+i

Deploying Contracts to Ethereum Reading Contract Data from Ethereum

Figure 3.5: Schematic representation of deploying and reading from smart contracts.
Adapted from Takeuchi [68]

Chapter 3. Fundamentals 18

Philipp Stangl Master’s Thesis

3.4 Blockchain Accounting

Blockchain accounting models are fundamental to how transactions are recorded and
managed across different blockchain systems. Each model offers a distinct approach to
tracking and verifying ownership and transfers of assets. This section outlines the two
relevant accounting models for this work: the account-based model (section 3.4.1) and
the unspent transaction output (UTXO) model (section 3.4.2).

3.4.1 Account-based Model

The account-based model is used by Ethereum [44], Polygon, and other blockchain
platforms designed to support smart contracts and decentralized applications. Like a
bank account that tracks the inflow and outflow of funds, thereby reflecting the current
balance, the account-based model in Ethereum maintains a global state of accounts and
balances of Ether (denoted in ETH). Each transaction results in a direct adjustment to
this balance, akin to a deposit or withdrawal in a bank account. This stateful nature of
the account-based model ensures that at any given moment, the system can accurately
reflect the total amount of Ether held in each account, offering an up-to-date view of
account balances within Ethereum. Account-based blockchains distinguish between
externally owned accounts (EOAs), which are controlled by private keys and used by
individuals, and smart contract accounts, which are governed by their contract code.

Consider the example under the account-based model, depicted in figure 3.6: Initially,
Alice is credited a balance of 30 ETH in her account, while Bob holds 15 ETH in his
account. When Alice decides to transfer 15 ETH to Bob, she initiates a transaction that
triggers changes in their respective account balances. As the transaction is processed,
Alice’s account shows a deduction of 15 ETH, effectively reducing her holdings to 15
ETH. Simultaneously, Bob’s account balance increases by 15 ETH, reflecting the receipt
of the transferred funds. This action results in Bob’s new balance increasing to 30 ETH.

Alice
30 ETH

+ 15 ETH

Bob
15 ETH

Alice
15 ETH

Bob
30 ETH

Transaction
To: Bob

From: Alice
Value: 15 ETH

Previous State

Current State

- 15 ETH

Figure 3.6: Transaction between Alice and Bob using ETH within the account-based model

Chapter 3. Fundamentals 19

Philipp Stangl Master’s Thesis

3.4.2 Unspent Transaction Output Model

The Bitcoin blockchain employs the UTXO model, which is distinctive for tracking
ownership through outputs. In this model, transactions are composed of inputs and
outputs, where outputs from one transaction become inputs for another (an example
is provided in the appendix in listing A.3). These outputs represent the unspent
funds that a user has available to spend, and the sum of a user’s UTXOs constitutes
their total balance. When initiating a Bitcoin transaction to send funds, the sender
specifies the recipient’s address and the amount in Satoshis, alongside a ScriptPubKey.
This ScriptPubKey is a cryptographic puzzle that locks the specified amount to the
recipient’s address, requiring a correct public key and signature for spending.

The UTXO model facilitates transaction processing by leveraging scripting languages.
It employs two scripts: ScriptPubKey, which locks the transaction output to a recipient,
and ScriptSig, which the spender uses to unlock this output for spending in a new
transaction. This model ensures that each transaction output remains unspent until
used by the recipient, allowing Bitcoin wallets to calculate their total balance based
on accessible UTXOs. Unlike the account-based model, the UTXO model generates
change when the transferred amount does not exactly match the payment amount.

The UTXO accounting model can be best understood through the analogy of banknotes
in a wallet. In this model, the balance of a Bitcoin address is akin to the total sum of
banknotes (UTXOs) it contains. These UTXOs are unspent, meaning they are locked by
the address and are available to be used in future transactions. Much like banknotes,
UTXOs are indivisible; they cannot be split into smaller units. Consider the example
under the UTXO model, depicted in figure 3.7: In order to pay Bob 15 Bitcoin (BTC),
Alice must send Bob a total amount of 20 BTC by bundling two UTXOs (each with 10
BTC) to make up the total input value of 20 BTC for this transaction. As a result of the
transaction, two new UTXOs are created. Output 1 is the value sent to Bob. Output 2
is the “change” created through the transaction and returned to Alice.

Input
20 BTC

Output 1
15 BTC

Output 2
5 BTC

UTXO
5 BTC

UTXO
5 BTC

UTXO
15 BTC

TransactionAlice Bob

Consumed UTXO Created UTXO

Legend:

UTXO
5 BTC

UTXO
10 BTC

UTXO
10 BTC

UTXO
10 BTC

UTXO
5 BTC

Address Transaction

Figure 3.7: Transaction between Alice and Bob using BTC within the UTXO model

Chapter 3. Fundamentals 20

Philipp Stangl Master’s Thesis

3.5 Privacy Techniques Used in Blockchain

Blockchain networks provide pseudo-anonymity as there is no user identification
required to join the network and only the addresses are publicly known. The following
section only covers the relevant privacy techniques for the scope of this thesis. For a
more comprehensive overview of privacy and security features, I refer to [69].

3.5.1 Accounting Model Privacy

The privacy afforded by different accounting models varies significantly, presenting
a spectrum of implications for users engaged in blockchain transactions. The UTXO
model is a distinct paradigm that provides enhanced privacy features compared with
its counterpart, the account-based model. This distinction stems from the structure
and operational mechanics of the UTXO model. Unlike the account-based model,
where all funds are consolidated into an account balance, the UTXO model allows
an account holder to possess multiple instances of UTXOs without combining them
into one total amount. Moreover, the UTXO model supports the usage of disparate
addresses for individual transactions. This feature significantly obfuscates the linkage
between different transactions and, by extension, the accounts involved. Consequently,
tracing transactions back to a single owner becomes considerably challenging.

An account holder, for instance, referred to as Alice, can execute numerous transactions
simultaneously, each utilizing distinct UTXO instances. When engaging in a transaction
with a payee, say Bob, Alice is required only to disclose the specific UTXO instances
allocated for the payment. This selective disclosure shields the total balance or the
aggregate sum of Alice’s UTXO holdings from the payee. To illustrate, Alice can
seamlessly distribute one BTC to Bob and two BTC to Carol, from a single three BTC
UTXO instance. Throughout this process, neither Bob nor Carol gains visibility into
the UTXO portfolio of Alice, preserving the privacy of her total portfolio value.

3.5.2 Cooperative Obfuscation

In the realm of digital currencies, particularly within the Bitcoin ecosystem, the UTXO
model has been lauded for its inherent privacy features. However, the research work
conducted by Meiklejohn et al. [70] shows that even with the UTXO model, some
Bitcoin payments can be traced. To counter this, obfuscation techniques have become
increasingly sophisticated. Among the various strategies devised to reinforce the
anonymity of Bitcoin transactions, the category of “cooperative obfuscation” methods
has gained substantial traction in recent years [71]. This category encompasses mixing
services and CoinJoin, which are predicated on the collective action of users to obscure
the traceability of transactions. Mixing services are not exclusive to the Bitcoin network
and have been adapted across various blockchain networks to enhance privacy by
blending the origins of transactions. Conversely, CoinJoin remains a unique approach
within the Bitcoin network, utilizing a specific method of transaction batching to merge
multiple inputs and outputs, thereby complicating the task of tracing transactions.

Chapter 3. Fundamentals 21

Philipp Stangl Master’s Thesis

Mixing Services

Mixing services, often referred to as tumblers, offer a compelling solution to the
challenge of transactional privacy. These services operate by pooling and mixing the
coins of several participants, effectively disassociating the original funds from their
final destinations. Users participate by sending their Bitcoins to a mixing service,
which then blends their coins with those of other users. Subsequently, the mixed coins
are redistributed to the participants, but because they are intermingled with the assets
of others, tracing the path from sender to recipient becomes more challenging.

Nowadays, mixing services have become widely used in account-based blockchains
due to the latter’s inferior privacy. Tornado Cash is one of the most popular mixing
service on Ethereum, with almost 1.6 million Ether deposited into its mixing contracts
as of 2021 [72]. This protocol utilizes a two-step process (depicted in figure 3.8): The
initial phase requires a user to send an amount of Ether to the Tornado Cash smart
contract from an originating address. This action generates a deposit note, which is
required for the subsequent withdrawal phase. The essence of this mechanism lies
in its ability to dissociate the deposited amount from its withdrawal. After a certain
latency period, which serves as a further measure to disassociate transactional links,
the user is able to initiate the withdrawal phase. Utilizing the previously obtained
deposit note, the user creates a withdrawal transaction for the same amount of Ether.
This prompts the contract to transfer the deposited Ether to a specified refund address,
chosen by the user. The refund address can be any Ethereum address, allowing for the
possibility of directing funds to newly created addresses with no transaction history.

The security and anonymity of Tornado Cash transactions are underpinned by zero-
knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) [73]. This
cryptographic technology ensures that the deposit and withdrawal transactions are
entirely independent of each other. Moreover, it guarantees that each deposit correlates
with a singular withdrawal, thereby eliminating the possibility of linking transactions
to their participants.

Figure 3.8: Process of Tornado Cash coin mixing. Adopted from Tang et al. [72]

Chapter 3. Fundamentals 22

Philipp Stangl Master’s Thesis

CoinJoin

CoinJoin represents another facet of cooperative obfuscation, distinguished by its
peer-to-peer approach that eliminates the need for a centralized service. In a CoinJoin
transaction, multiple participants agree to combine their transactions into a joint
transaction. By doing so, they obscure the link between the input (sending) and output
(receiving) addresses involved in the transactions. This approach was proposed by
Maxwell [74] in 2013 to address privacy concerns with the common-input ownership
heuristic (cf. section 4.2.1). At present, different implementations of CoinJoin exist:

• Chaumian CoinJoin [74], [75]: CoinJoin based on Chaumian blind signatures

• WabiSabi [76]: a generalization of Chaumian CoinJoin for centrally coordinated
CoinJoins with variable amounts

• JoinMarket [77]: an implementation based on a maker/taker structure where the
maker provides their Bitcoin (for a fee) as part of the taker’s transaction

• ZeroLink [78]: mixes multiple transactions into one batch, further hindering
source and destination tracing

• Whirlpool [79]: software implemented in the Samourai wallets that allows users
to engage in CoinJoin rounds through a Whirlpool entrusted coordinator using a
Chaumian CoinJoin implementation

Figure 3.9 illustrates the concept of a CoinJoin transaction compared to a regular Bitcoin
transaction. The left side depicts two regular, individual transactions (T0, T1) where
each sender transacts with each recipient separately. Transaction T0 transfers funds
from Alice to Carol, with some change being returned to Alice. Similarly, transaction
T1 shows the transfer of funds from Bob to Dave, with some change being returned
to Bob. The right side of the image, depicts the CoinJoin transaction TCoinJoin with
inputs from both Alice and Bob. Instead of separate outputs for each recipient, there
are multiple outputs from the CoinJoin transaction TCoinJoin that go to Carol, Dave, and
the change addresses.

Figure 3.9: Two individual transactions on the left are combined into a CoinJoin transaction
on the right. Adopted from Möser and Böhme [80]

Now that the fundamentals of KGs and blockchain technology have been explored, the
following chapter analyzes the state of the art.

Chapter 3. Fundamentals 23

Philipp Stangl Master’s Thesis

Chapter 4

State of the Art

This chapter discusses related work explored in the research for Kosmosis. Firstly, the
methodologies and advancements in incremental KG construction are discussed in
section 4.1. Subsequently, section 4.2 examines graph-based blockchain data mining
that can be utilized in the domain of crypto asset fraud.

4.1 Incremental Knowledge Graph Construction

The work of Tamašauskaitė and Groth [81] analyzes existing approaches for KG
construction. They show that current approaches for the construction of KGs are based
on a batch-based approach. This approach requires the recreation of the entire KG and
thus a significant amount of repetitive processing to repeatedly extract and modify
the same (unchanged) data. Data integration and the elimination of inconsistencies
must be performed repeatedly. For this reason, recent studies [4], [81] have proposed a
generic KG development life cycle consisting of the following five tasks:

1. Data Acquisition: Identification of relevant data sources. Acquisition and initial
transformation of source data. Initial data cleaning, if required.

2. Knowledge Extraction (section 4.1.1): Derivation of structured information and
knowledge from un- or semi-structured data. Extracting entities and relations.

3. Knowledge Processing (section 4.1.2): Identification of matching entities in the
data, mapping data to the ontology, and integrating new knowledge into the KG.

4. Ontology Management (section 4.1.3): Creation and incremental development of
an ontology that is applied to the KG.

5. Quality Assurance: Maintaining a high data quality in the KG by evaluating
and updating it accordingly. Additionally, Hofer et al. [4] consider knowledge
completion as part of quality assurance. This includes the completion and
enrichment of the knowledge in the KG (e. g., predicting new relations, learning
missing type information).

24

Philipp Stangl Master’s Thesis

4.1.1 Knowledge Extraction

Data ingested into the KG construction pipeline must be processed in several steps,
depending on the data source. The first step is to extract knowledge from raw data.

Named Entity Recognition

Named entity recognition (NER) refers to identifying mentions of named entities in
an input text [82], [83], demarcating mentions of people, organizations, locations, and
other types of entities [84], [85]. Figure 4.1 shows an instance in which an NER system
identifies three named entities within a given sentence. Identified named entities are
used to either generate new candidate RDF triples for the KG, or to link them to
existing RDF triples using entity resolution (sometimes referred to as entity linking).
Li et al. [84] formally define NER as follows:

“Given a sequence of tokens s = ⟨w1, w2, . . . , wN⟩, NER is to output a list
of tuples ⟨Is, Ie, t⟩, each of which is a named entity mentioned in s. Here,
Is ∈ [1, N] and Ie ∈ [1, N] are the start and the end indexes of a named
entity mention; t is the entity type from a predefined category set.”

For NER, two kinds of approaches can be distinguished, namely, knowledge-based
and learning-based. Knowledge-based approaches [86], [87] utilize explicit resources
such as dictionaries, rules, and gazetteers, which are often handcrafted. These methods
rely on a predefined set of rules or lists that help in identifying and classifying named
entities within the text. Dictionary-based methods map the labels of desired entities
to identifiers in a knowledge base. Therefore, they provide recognized entities in a
text with the right link to the knowledge base and thus solve the tasks of NER and
entity resolution in one step. However, dictionaries are usually incomplete because
they cannot possibly cover all entities, especially those that are newly emerging, less
common, or highly specific to niche domains. This limitation means that knowledge-
based systems may fail to recognize or incorrectly classify new or obscure named
entities that do not exist in their predefined resources. Additionally, language evolves
over time, introducing new terms and phasing out old ones.

< w1, w3, Person >
< w7, w7, Location >
< w9, w10, Location >

< Is, Ie, t >

s = < w1, w2, … , wN >

New York
Brooklyn
Michael Jeffrey Jordan

Michael Jeffrey Jordan was born in Brooklyn , New York .
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

Named Entity Recognition

Figure 4.1: Illustration of the named entity recognition task. Adapted from Li et al. [84]

Chapter 4. State of the Art 25

Philipp Stangl Master’s Thesis

Gazetteers offer exhaustive lists that include, for instance, common first names, last
names, or countries. Toral and Muñoz [88] distinguish between two kinds of gazetteers:

• Trigger gazetteers contain keywords that suggest the likely presence of a particular
type of entity. These keywords usually are common nouns (e. g., “Ms.” indicates
that the following entity is a person).

• Entity gazetteers contain entities themselves, which usually are proper nouns (e. g.,
“New York” could be an instance in a location gazetteer).

Learning-based approaches use learning frameworks to recognize and categorize
named entities. They can be further distinguished by supervised, bootstrapped,
and deep learning-based approaches. Supervised approaches are based on a tagged
corpus that was used to train a supervised learning algorithm, enabling the NER
algorithm to improve its ability to recognize and categorize named entities in new texts
by learning from examples. Lexical features, such as part-of-speech (POS) tags and
dependency parse trees, provide contextual clues that help in the accurate identification
and classification of entities. For instance, POS tags can indicate whether a word
functions as a proper noun, which is an indication of a named entity [85]. Similarly,
dependency parse trees reveal the grammatical relationships between words, aiding
in the understanding of entity mentions that may span multiple words or phrases.
Bootstrapped methods [85], on the other hand, only require a small set of seed examples
of entity mentions from which patterns can be learned and applied to unlabeled text.

Current state-of-the-art NER approaches are deep learning-based. NER benefits from
the nonlinear transformation, which generates nonlinear mappings from input to
output: “The key advantage of deep learning is the capability of representation learning
and the semantic composition empowered by both the vector representation and neural
processing. This allows a machine to be fed with raw data and to automatically discover
latent representations and processing needed for classification or detection [89]” [84,
p. 5]. As a result, deep learning-based NER can save efforts on engineering NER
features compared with traditional feature-based approaches.

Relation Extraction

While NER serves to identify and extract entities (e. g., people, organizations), these
entities remain isolated. The task of relation extraction is to determine and extract the
relationship between these named entities [82], as illustrated in figure 4.2 for text data.

Michael Jeffrey Jordan was born in Brooklyn , New York .

Person

birthplace_of

Location
Figure 4.2: Illustration of the relation extraction task

Chapter 4. State of the Art 26

Philipp Stangl Master’s Thesis

Relation extraction varies by data type:

• Structured data presents relations in an explicit and easily identifiable manner,
often found in databases where relationships are predefined.

• Semi-structured (e. g., JSON or XML) data, requires pattern-, rule-, and machine
learning-based methods to identify relationships. These data types offer some
level of structure that can be leveraged to extract relations.

• For unstructured, textual data, which comprises the majority of the data available
on the internet (e. g., news articles, social media posts), the extraction process be-
comes more challenging. It requires interpreting semantic information embedded
within the text.

However, the task of relation extraction is not without its challenges. These include,
but are not limited to, dealing with linguistic variability, which refers to the different
ways in which a relationship can be expressed; handling implicit relations that are
not directly stated; disambiguating entities and relations to ensure accuracy; and
transferring knowledge across domains.

4.1.2 Knowledge Processing

Following the extraction of knowledge, it must be processed and refined before it
can be stored in the KG. This comprises two tasks: entity resolution and knowledge
fusion. Entity resolution, also known as record linkage or deduplication, involves
identifying and linking multiple representations of the same entity across different
datasets or within a single dataset. Knowledge fusion is concerned with the integration
of information about an entity from various sources into a coherent and unified
representation within the KG. It involves resolving conflicts in the data obtained from
different sources, which may vary in reliability, freshness, and accuracy.

Entity Resolution

Entity resolution aims to identify and link records across multiple datasets that refer
to the same entities. This task is complex due to the vast amount of data and the
discrepancies in how entities are represented across different sources. The standard
approach to tackling this challenge is structured around three successive phases
(illustrated in figure 4.3) [90]: blocking, matching, and clustering. Initially, the blocking
phase aims to significantly reduce the number of entity pairs that must be evaluated.
This is achieved through a partitioning strategy, ensuring that only entities within
the same partition are compared with each other. The core of entity resolution lies in
the linking or matching phase, where the main objective is to ascertain the similarity
between pairs of entities to identify potential matches. This step often culminates in
the formation of a similarity graph, where nodes symbolize entities and edges connect
pairs deemed similar. Although not always included, an optional clustering phase
leverages this similarity graph to aggregate all matching entities, thereby enhancing
the quality of the entity resolution process.

Chapter 4. State of the Art 27

Philipp Stangl Master’s Thesis

Fusion

New Entities

0.9

1.0

0.5

0.8

0.6

Blocking Matching Clustering

Previous Clusters

New Entities

Blocking Matching Clustering

Previous Clusters

Fusion

Figure 4.3: Illustration of the entity resolution task. Adopted from Hofer et al. [4]

Knowledge Fusion

Merging multiple records of the same entity to identify true (s, p, o) triples is known
as data fusion [91], or, in the context of knowledge processing, as knowledge fusion
[92]. Initially, there might be discrepancies in the naming of attributes across records,
necessitating the selection of a single preferred name. This chosen name should align
with the naming conventions of similar entities to simplify data querying. The next
step involves addressing inconsistencies or disputes at the attribute level. Instead of
resolving these conflicts directly, the system might preserve the differing attribute
values or pass the issue to the user’s application for resolution. The system adopts
a uniform approach to managing all data, giving precedence to information from
reputable sources. Before implementing a specific strategy, such as selecting the
most common, most recent, or a randomly chosen value, it thoroughly reviews all
data and metadata. By fusing multiple records representing the same entity into a
single and consistent representation [92], knowledge fusion allows for a more accurate
representation of an entity in the final KG.

4.1.3 Ontology Development

The first iteration of ontology development encompasses the creation or extension of
an ontology that is applied to a KG. Subsequent iterations incorporate new information
to reflect a growing understanding of the domain. The creation and curation of these
ontologies currently rely on manual efforts or crowdsourcing, although there has been
some movement towards semi-automatic approaches. Typically, the initial version
of an ontology is rooted in a single source (e. g., public web wikis, catalogs, APIs,
or databases curated by the crowd) providing a structured dataset from which the
ontology is shaped. However, the transformation of this raw data into a coherent and
comprehensive ontology necessitates cleaning and enrichment processes to ensure it
adequately represents the intended domain and adheres to the high-quality standards
required for KG integration. Another important step in the integration of ontologies is
to match ontology and schema elements (e. g., classes) to find equivalencies.

Chapter 4. State of the Art 28

Philipp Stangl Master’s Thesis

4.2 Graph-based Blockchain Data Mining

Graph theories and graph-based data mining methods are applicable for discovering
information in blockchain network graphs because blockchain transactions can be
easily structured into graphs [7]. Figure 4.4 depicts three types of graphs, identified
by Elmougy and Liu [93], that are applicable to any blockchain network: money flow
transaction graphs visualize the asset flow over time, address-transaction graphs show
the flow of an asset across transactions and addresses, and user entity graphs that use
deanonymization methods, outlined in section 4.2.1, to link addresses controlled by
the same user to deanonymize their identity and purpose. These graphs serve as a
foundation for downstream tasks such as transaction pattern recognition (section 4.2.2)
to track and observe transactions from specific addresses, and illicit activity detection
(section 4.2.3) to detect scams and other sorts of illicit activities [94].

Tx

Tx

Tx

Tx

Tx

Tx

(a) Money Flow Transaction Graph. This is a directed graph
where nodes represent transactions and edges represent
directed asset flows from one transaction to the next.

Addr

Tx

Tx

Tx

Tx

Tx

AddrAddr

(b) Address-Transaction Graph. This is a heterogeneous directed
graph with transaction (blue) and address (orange) nodes,
and sender-to-transaction and transaction-to-receiver edges.

Tx3Tx1

Addr1

Tx8

Tx4Tx2

Addr3Addr2 Addr4

User 1

User 2

Tx5

Addr5

User 3

Tx6

Addr6

User 4

Tx7

Addr7

User 5

(c) User Entity Graph. This graph is generated by address clustering analysis over an address-transaction graph.

Figure 4.4: Overview of the different types of blockchain graph models

Chapter 4. State of the Art 29

Philipp Stangl Master’s Thesis

4.2.1 Blockchain Address Deanonymization

The objective of address deanonymization is to uncover the (real-world) entities behind
pseudonymous addresses involved in blockchain transactions. The term “entity” was
introduced by Ron and Shamir [95, p. 5] to describe the common owner of addresses.

Bitcoin Address Deanonymization

To deanonymize the identity of Bitcoin users, several studies [70], [96]–[98] have
examined Bitcoin address clustering, a method that can potentially link addresses
owned by a single user. Despite the increasing interest in applying machine learning
techniques for deanonymization, the predominant methodology for address clustering
remains rooted in heuristic-based approaches. These methods seek to deanonymize
Bitcoin addresses by exploiting how wallet software creates transactions or utilizing
the structural information of certain transactions to reason about entities involved in a
transaction. The following Bitcoin heuristic focuses on the input side of transactions.
Subsequent heuristics pivot to the output side of transactions, specifically for the
identification of change addresses.

Common-input-ownership

The common-input-ownership heuristic, also called the common spend, multi-input, or
Nakamoto/Meiklejohn heuristic, is predicated on the assumption that all input addresses
to a transaction are owned by the same real-world entity. This assumption stems from
the requirement for the initiator of a transaction to possess the private keys for all
involved input addresses simultaneously. Such transactions, which involve multiple
inputs, are typically necessitated when a single UTXO does not have a large enough
value to cover the desired payment amount. For instance, as illustrated in figure 4.5, the
three input addresses for the transaction can be attributed to the same real-world entity.
Notably, the original Bitcoin whitepaper [43] referenced this heuristic, albeit with the
inaccurate assertion of its universal applicability. The CoinJoin method presents a
notable countermeasure to this heuristic, enabling multiple parties to jointly execute a
transaction with inputs from distinct owners, thereby complicating the application of
the common-input-ownership heuristic.

Address 4
0.025 BTC

Address 5
0.1 BTCTransaction

Address 1
0.04 BTC

Address 2
0.05 BTC

Address 3
0.06 BTC

Address 6
0.025 BTC

Figure 4.5: Illustration of the common-input-ownership heuristic

Chapter 4. State of the Art 30

Philipp Stangl Master’s Thesis

Möser and Böhme [80] argue that participants agreeing on a common output size in a
transaction form a characteristic that distinguishes CoinJoins from normal transactions.
Further, they note, the difficulty of finding matching subsets for a CoinJoin transaction
increases as the number of participants increases. While enhancing anonymity, this in
turn also makes the transaction more distinct compared with other transactions.

Address Reuse

The address reuse heuristic, often referred to as the shadow heuristic, centers on the
observation of wallet software practices where, instead of generating a new change
address for transactions, the change is redirected back to the originating input address.
Such behavior conspicuously marks the change address, undermining the privacy
of the transaction parties by making it easier to trace transactions back to them.
Furthermore, when an address was never previously observed in a transaction, it
is most likely a change address. This assumption is based on the rationale that the
creation of a new address within a transaction typically aims to redirect the UTXO
back to the sender as change. Additionally, this heuristic gains utility from the fact that
most addresses subjected to reuse are often disclosed on various internet platforms,1

including forums and social networks.

Equal-output CoinJoin

The equal-output CoinJoin heuristic involves a scenario in which input addresses are
contributed by multiple distinct entities (cf. section 3.5.2). This method allows these
entities to send identical amounts of funds to several addresses, thereby enhancing
privacy and making it more challenging to trace transactions back to their origin. For
example, as illustrated in figure 4.6, both “Address 21” and “Address 32” receive the
same output value, which complicates the task of discerning which entity transferred
funds to each address. Despite this obfuscation, it remains feasible to identify the
change address by subtracting the total output value from the sum of input values.
For instance, if the input adds to 0.011 (0.006 + 0.005) BTC and the output is 0.01 BTC,
the difference of 0.001 can be attributed to the change address.

Address 21
0.01 BTC

Address 14
0.003 BTC

Address 3
0.001 BTC

Address 32
0.01 BTC

Transaction

Address 11
0.013 BTC

Address 1
0.006 BTC

Address 2
0.005 BTC

Figure 4.6: Illustration of the equal-output CoinJoin heuristic

1https://checkbitcoinaddress.com/

Chapter 4. State of the Art 31

https://checkbitcoinaddress.com/

Philipp Stangl Master’s Thesis

Script Type

The script type heuristic for Bitcoin transactions provides a method for identifying the
change output in a transaction, which can be crucial for analyzing and understanding
transaction flows on the blockchain. In transactions, it is common for an entity to utilize
a single script type for all operations, meaning that the output that maintains the same
script type as the inputs is typically the change address. This becomes particularly
evident in transactions where inputs and outputs consist of differing script types; the
output that shares the script type of the input is likely designated for change, while the
other output is directed toward payment. Even in cases where inputs possess mixed
script types, an output matching any script type of the input, while the other does not,
suggests that the unmatched output is the intended payment. In figure 4.7, it can be
inferred that “Address 4” is the change address as it is the only output address with
the same script type as the input addresses. Early adopters of protocol upgrades, such
as Pay-to-Script Hash (P2SH) or Pay-to-PubKey Hash (P2PKH), may inadvertently
highlight their change outputs due to the scarcity of transactions sharing the same
script type at the onset of the upgrade’s introduction. However, this effect diminishes
as the new address types become more widely adopted.

Address 21
pubkey

Address 14
pubkey

Address 4
pubkeyhash

Address 32
non-standard

Transaction

Address 1
pubkeyhash

Address 2
pubkeyhash

Address 3
pubkeyhash

Figure 4.7: An illustration of the script type heuristic

Optimal Change

The optimal change heuristic (also known as the unnecessary input heuristic) is premised
on the assumption that wallet software is designed to optimize transactions by avoiding
the expenditure of unnecessary outputs. This entails wallets strategically selecting
outputs to not only cover the transaction amount but also to ensure the total surpasses
the intended sum to be sent. In line with this, optimal transactions are characterized
by the exclusion of outputs that, if not spent, would still fulfill the desired transaction
value, thereby circumventing additional fees. Moreover, it stipulates that transactions
should not feature change values exceeding the amount of any spent output as this
indicates that certain outputs could have been omitted to minimize fees. Therefore,
discerning the smallest change value as the “optimal change output” can aid in
identifying the true change address within a transaction.

Chapter 4. State of the Art 32

Philipp Stangl Master’s Thesis

Round Numbers and Decimal Places

Typically, change addresses exhibit a higher number of decimal places compared
with other outputs. This discrepancy arises both from the mechanics of transaction
fees, which necessitate fine adjustments to the transaction amount, and from the
prevalent human preference for using round numbers when specifying transaction
amounts. While earlier transactions might have shown a tendency to reduce the
precision for change addresses, the current norm involves all output addresses featuring
decimal points to some extent. Identifying change addresses accurately is crucial and
requires precise parameters. The methodology of the round numbers and decimal places
heuristic entails a search for addresses that contain more than seven decimal places
and comparing these with addresses with fewer than two decimal places to ascertain
the likelihood of an address being used for change. This heuristic, despite its simplicity
and potential for exceptions, has shown to be effective if there is a is a clear discrepancy
in the decimal length parameters.

EVM Address Deanonymization

The domain of address deanonymization has predominantly been concentrated on
Bitcoin. Despite the widespread adoption of EVM blockchains, research efforts directed
toward address deanonymization and clustering have been minimal. In this context,
Victor [99] proposed heuristics for identifying real-world entities within the Ethereum
network, specifically through methods such as deposit address reuse and airdrop
multi-participation. Among these, the reuse of deposit addresses emerges as the most
effective strategy for entity identification, whereas the approach based on transfer
authorization is deemed negligible due to its minimal address coverage and is thus
not covered here. To address coin mixing, Tang et al. [72] proposed heuristics based on
statistical analysis for linking Ethereum addresses that interacted with Tornado Cash.

Deposit Address Reuse

The deposit address reuse heuristic for Ethereum, proposed by Victor [99], provides a
methodological approach to identify deposit addresses associated with centralized
exchanges. This heuristic is predicated on the understanding that when customers
wish to deposit their assets into their accounts on a centralized exchange, they must
first transfer their assets to a specific deposit address linked to their account. This
deposit address, which is controlled by the exchange and can be either an EOA or
a smart contract, is where the assets remain until they are automatically transferred
to the hot wallet 2 owned by the exchange. Further, deposit addresses are typically
unique to each customer, suggesting that multiple addresses funneling funds to the
same deposit address are likely under the control of a single entity. The heuristic
focuses on the forwarding principle — tracking asset flows from deposit addresses
to the main accounts of exchanges — to cluster addresses generated by centralized
exchanges for the purpose of receiving customer deposits.

2 Hot wallets are connected to the internet for everyday transactions. In contrast, cold wallets are
offline and typically stored on hardware devices to provide secure long-term storage for crypto assets.

Chapter 4. State of the Art 33

Philipp Stangl Master’s Thesis

0x1 0x2 0x3 0x4 0x5 0x6

0xd1 0xd2 0xd3 0xd5 0xd60xd4

1 2 3 4 5 6 7 8 9

1 2, 3 4 5, 6 7 8, 9

EOA, Non-Miner,
Non-Exchange

Deposit Address,
Non-Exchange

Hot Wallet,
Exchange Address

Exchange A Exchange B

Exchange A
Cold Wallet,
Exchange Address

Exchange A Exchange
B

Exchange
B

Exchange
B

Figure 4.8: Illustration of the deposit address reuse heuristic, adopted from Victor [99], and
extended with the fund-gathering pattern by Wang et al. [100]. Colors indicate
the same real-world entity. Arrows indicate the flow of crypto assets between
blockchain addresses.

Wang et al. [100] expand on this concept by identifying deposit addresses as part of a
fund-gathering pattern, which aids in identifying the related hot and cold wallets of an
exchange. They assert that the public availability of information regarding hot and cold
wallets (e. g., through platforms like Etherscan for Ethereum) is instrumental in labeling
hot wallets accurately. Once a hot wallet is identified, it becomes feasible to pinpoint
customer deposit addresses, which characteristically transfer assets exclusively to the
hot wallet. Using this heuristic, figure 4.8 depicts an example where 0x2–0x4, as well
as 0x5 and 0x6, are indicated to be owned by the same real-world entities, respectively.

Airdrop Multi-Participation

An airdrop is a method to automatically distribute tokens to multiple recipients on
the Ethereum blockchain using smart contracts. The determination of token allocation
to recipients can be: (1) tiered systems, where different levels of involvement in the
protocol grant users different allocation tiers; (2) participation, where users who actively
participate in the protocol might receive more tokens; or (3) fixed amounts to a broad
group of users, regardless of their level of interaction with the protocol. Post-airdrop,
it is a common practice among recipients to consolidate their dispersed tokens into a
single address for convenience or management purposes [99]. This behavioral pattern
of consolidation presents an opportunity to identify individual real-world entities
that may receive tokens multiple times. This identification is achieved by tracking the
transfer of tokens from their initial recipient addresses to secondary ones. However,
Victor [99] emphasizes the importance of carefully excluding addresses controlled by
centralized exchanges, smart contracts associated with decentralized exchanges, and,
generally, addresses exhibiting no activity from this analysis to avoid false positives.
Figure 4.9 illustrates an example where 0xa1–0xa3, 0x1 and 0xa4–0xa6, as well as 0x2
and 0xa7–0xa10, are indicated to belong to the same real-world entities, respectively.

Chapter 4. State of the Art 34

Philipp Stangl Master’s Thesis

0xa6

0xa5

0x1

0x2

0xa4
0xa30xa20xa1

0xa7

0xa8

0xa9

0xa10

Airdrop
distributor

1

1

1
1 1 1

1
1

1

1

1

1

1

1

1

1

1

1

1

1
111

1 1

1
1

1

Figure 4.9: Illustration of the airdrop multi-participation heuristic. Colors indicate the
same real-world entity. Adopted from Victor [99]

Tang et al. [72] conducted an analysis of transaction data from Ethereum, focusing
specifically on interactions with the coin mixing service Tornado Cash. During their
research, they identified two transaction behavior patterns: single deposit-withdraw,
and multi-deposit and multi-withdraw coin mixing. For each of these behavioral
patterns, they developed clustering heuristics as follow.

Single Deposit-Withdraw Coin Mixing

A single deposit-withdraw involves a deposit transaction (d), where a user deposits an
amount of ETH using address a. After a certain time interval (denoted as δ), the user
withdraws the same amount of ETH in a withdraw transaction (w) from a different
address b. This pattern is captured by a triplet ⟨d, w, δ⟩, with δ representing the time
difference between the withdraw and deposit transactions (δ = w.ts− d.ts). The deposit
(d) and withdraw (w) transactions must meet the following conditions:

• The source of the deposit (d.from) must be the address a.

• The recipient of the input for the withdraw transaction (w.input.recipient) must
be the address b.

• The destination of the deposit transaction (d.to) must be the same as the destina-
tion of the withdraw transaction (w.to).

The addresses in the transaction pairs {w.input.recipient, d.from} are considered to
belong to the same user if δ ≤ 180s.

Chapter 4. State of the Art 35

Philipp Stangl Master’s Thesis

Multi-Deposit and Multi-Withdraw Coin Mixing

In this scenario a user performs a series of deposit transactions, at least n(≥ 2),
denoted as D = {d1, d2, . . . , dn}. These deposits are made to a set of addresses
A = {a1, a2, . . . , an}. After a certain interval (∆), the same user executes a series of
withdraw transactions corresponding in number to the deposit transactions (W =
{w1, w2, . . . , wn}) using a different set of addresses B = {b1, b2, . . . , bn}. The pattern is
represented by a sequence ⟨δd, D, δw, W, ∆, n⟩, where:

• δd is the largest time difference between any two deposit transactions.

• δw is the largest time difference between any two withdraw transactions.

• ∆ is the time difference between the first withdraw transaction and the last
deposit transaction.

For this heuristic, the following conditions must be satisfied to consider the addresses
{d1.from, . . . , dn.from, w1.input.recipient, . . . , wn.input.recipient} in the n deposit and
withdraw transactions to belong to the same user:

• d1.from = d2.from = · · · = dn.from;

• w1.input.recipient = w2.input.recipient = · · · = wn.input.recipient;

• δd, δw ≤ 10min and ∆ ≤ n ∗ 12h.

Cross-Chain Address De-Anonymization

Yousaf et al. [101] conducted a study on tracing transactions across cryptocurrency
ledgers. Specifically, they focused on the ability to link together the blockchains of
multiple different cryptocurrencies using trading platforms like ShapeShift [102] and
Changelly [103] that allow users to exchange their cryptocurrency, with the possibility
that they receive their exchanges cryptocurrency on another blockchain. For this study,
they collected data by engaging with ShapeShift and Changelly and collecting data
from their interactions via the APIs. Additionally, they downloaded and parsed the
blockchain data of eight different blockchains, resulting in a total of 434 GB, to examine
on-chain transactional behavior.

They observed various behavioral patterns in cross-currency transactions conducted on
platforms like ShapeShift (depicted in figure 4.10): pass-through, U-turn, and round-
trip transactions. Pass-through transactions represent the flow of money from one
currency to another via deposit and withdrawal transactions. U-turns occur when a
user shifts into one currency but then immediately shifts back, linking two transactions
within a short timeframe and similar value. Round-trip transactions involve a user
sending money to another currency and then back to the original one, identifying the
movement of funds across different ledgers. Similar to mixing services, Yousaf et al.
[101] define the process in two phases. Phase 1 refers to the deposit of coins from the
user to the service on the input blockchain, while phase 2 refers to the withdrawal of
coins from the service to the user on the output blockchain.

Chapter 4. State of the Art 36

Philipp Stangl Master’s Thesis

ShapeShift

(a) Pass-through

phase 1 phase 2
ShapeShift

(b) U-turn

phase 2

phase 1
ShapeShift

(c) Round-trip

phase 2

phase 1

phase 1

phase 2

Figure 4.10: Cross-chain transaction patterns. Adopted from Yousaf et al. [101]

Additionally, Yousaf et al. [101] defined a common relationship heuristic for relationships
between individual ShapeShift users, where they consider what it means for two
different addresses, in potentially two different blockchains, to have sent coins to the
same address; they refer to these addresses as belonging in the input cluster of the
output address. Analogously, if a single address sends coins to multiple addresses,
they refer to it as output cluster. Based on these clusters, the authors present three
possible scenarios of common relationship:

1. In a closest link, the activity might indicate that a single user is consolidating
funds from different currencies into one.

2. Alternatively, there could be interactions among various users with a shared
service, such as a cryptocurrency exchange.

3. Another possibility is that two unrelated users might coincidentally send money
to the same recipient, suggesting a coincidental overlap rather than a meaningful
connection between the users.

4.2.2 Transaction Pattern Recognition

Transaction pattern recognition deals with tracking and observing transactions from
specific addresses in order to identify patterns within the blockchain network [94].
Thereby, this method provides insights into standard and anomalous behaviors within
the network. The primary approach for the recognition of transaction pattern is through
the use of visualization software by leveraging graphical representations to elucidate
the transactions and interactions between various addresses on a blockchain network.
The core premise behind visualization is that by translating complex transactional
data into a visual format, stakeholders can more intuitively comprehend and identify
patterns, trends, and anomalies within the network. This direct observation from the
visualization results facilitates a better understanding of network behaviors, enabling
users to spot irregularities that may suggest fraudulent activities or other notable events.
Several solutions exist to visualize blockchain transactions, for instance, the Visualizer
by Arkham Intelligence [104] and Reactor by Chainalysis [1] (depicted in figure 4.11).
They offer functionalities for zooming into specific transactions, filtering by certain
criteria, and highlighting the connections between different network participants. Such
capabilities empower analysts, regulators, and other stakeholders to make informed
decisions based on a comprehensive visual analysis of the blockchain network. Through
the strategic use of visualization methods, stakeholders involved in the blockchain
ecosystem can bolster their monitoring and investigative efforts.

Chapter 4. State of the Art 37

Philipp Stangl Master’s Thesis

Figure 4.11: Reactor blockchain forensic software by Chainalysis

4.2.3 Illicit Activity Detection

The detection of illicit activities within blockchain networks has garnered considerable
attention in recent academic research, showcasing a variety of innovative methods
aimed at identifying fraudulent transactions and scam accounts. As depicted in the
introduction chapter in figure 1.1, scams are the most common category of crypto asset
fraud. Therefore, a wealth of research efforts has been devoted to detecting scams with
crypto assets. Pham and Lee [105] marked an early attempt in this field by applying
the trimmed k-means algorithm to unearth fraud within the Bitcoin network, utilizing
hand-crafted features derived from the transaction network. Progressing further, Chen
et al. [106] expanded the scope to Ethereum, where they developed techniques for
Ponzi scheme detection by analyzing both account and code features extracted from
transactions and opcodes, respectively. This allowed for the early identification of such
financial scams. Recognizing scam account detection as a node classification challenge,
some researchers have turned to network embedding methods to automate the feature
extraction process from transaction networks. A notable advancement was made by
Chen et al. [107], who employed a Graph Convolutional Network (GCN) to detect
phishing scams in Ethereum, surpassing the efficacy of previous methods reliant on
handcrafted features. Concurrently, Tam et al. [108] introduced EdgeProp, a GCN-based
approach that not only learns embeddings for nodes and edges within transaction
networks but also integrates edge attributes to enhance the identification of illicit
accounts and decipher transaction patterns, specifically in Ethereum. Additionally,
Lin et al. [109] have contributed to this evolving field by developing random walk-
based embedding techniques that consider transaction-specific attributes like amount,
timestamp, and multi-edge interactions, proving to be effective in phishing detection.

Chapter 4. State of the Art 38

Philipp Stangl Master’s Thesis

Apart from detecting scams, other methods using graph-based methods have been
proposed to detect money laundering (e. g., [110]), using methods like deepwalk and
node2vec, and other illicit activities such as the use of cryptocurrencies in ransomware
payments (e. g., [111]) based on topological information.

4.3 Summary

The state of the art in KG construction encompasses a comprehensive methodology
that includes data acquisition, knowledge extraction (with subtasks such as NER and
relation extraction), knowledge processing (featuring entity resolution and knowledge
fusion), ontology management (beginning with the creation of an initial ontology
and its subsequent incremental development), and quality assurance to ensure the
high data quality within the KG. This sequential process facilitates the systematic
transformation of raw data into a structured KG.

In parallel, graph-based data mining methods have been developed for transaction
graphs, focusing on address deanonymization, transaction pattern recognition, and
detection of illicit activities. Despite the success of these techniques in their respective
areas, there remains a notable gap in the application of KG-based approaches to the
detection of crypto asset fraud. Such an approach could potentially offer enhanced
expressivity and a more nuanced understanding of fraudulent activities by leveraging
the semantic richness of KGs. At present, there is currently no pipeline available for
incrementally constructing a KG from blockchain data.

Chapter 4. State of the Art 39

Philipp Stangl Master’s Thesis

Chapter 5

Rug Pull Prevention Use Case

A rug pull can be categorized as a scam, where the victim authorizes the transaction.
This type of scam is typically conducted in five stages, according to [56]:

1. Project creation with roadmap and total supply of tokens (optional)
2. Pre-mint hype
3. Setting the token mint price
4. Token mint, accumulation of more capital, and increase in popularity
5. Creators cash out, abandon the project, and leave the investors defrauded

To attract users and investments for rug pulls, Sharma et al. [56] suggest the involvement
of individuals or groups that possess substantial technical skills and knowledge of
blockchain technology and demonstrate a proficiency in marketing techniques. This
specific use case is particularly relevant given the findings in [56] and [55]: Mazorra et
al., who analyzed ERC-20 tokens listed on decentralized exchanges in their 2022 study
and labeled 97.7% out of 27,588 analyzed tokens as rug pulls [55]. Similarly, Sharma
et al. analyzed NFTs and identified a cluster of 168 of them associated with what
they termed the “Rug-Pull Mafia,” a group of creators responsible for orchestrating
multiple and repeated rug pulls [56]. There is a growing trend in both the frequency
and the financial impact of crypto rug pulls and scams [112], illustrated in figure 5.1.
Notably, 2021 marks a peak in the amount stolen, while 2022 shows a sharp rise in the
frequency of these fraudulent activities, which has remained elevated since.

To illustrate the vision of Kosmosis-enabled rug pull prevention methods, this section
introduces a hypothetical user story1 centered around a character named Bob, a crypto
market participant. This user story is designed to provide a relatable perspective on
how individuals like Bob are affected by such fraudulent activities. The story of Bob,
while fictional, is grounded in a series of real-world rug pulls that occurred in 2021. All
rug pulls were performed by the same fraudulent NFT creator and X user known as
Homer_eth. The following sections outline how the series of rug pulls experienced by
Bob might have unfolded differently had he been equipped with a Kosmosis-enabled
fraud prevention mechanism at the time.

1The user story method of use case illustration is adopted from our previous work in [113], [114]

40

Philipp Stangl Master’s Thesis

Ja
n

20
17

Ju
l 2

01
7

Se
p

20
17

Oc
t 2

01
7

No
v

20
17

De
c

20
17

Ja
n

20
18

Fe
b

20
18

M
ar

 2
01

8
Ap

r 2
01

8
M

ay
 2

01
8

Ju
n

20
18

Au
g

20
18

Oc
t 2

01
8

No
v

20
18

De
c

20
18

Ja
n

20
19

Fe
b

20
19

Ap
r 2

01
9

M
ay

 2
01

9
Ju

n
20

19
Ju

l 2
01

9
Oc

t 2
01

9
De

c
20

19
M

ar
 2

02
0

Ap
r 2

02
0

Ju
n

20
20

Ju
l 2

02
0

Au
g

20
20

Se
p

20
20

Oc
t 2

02
0

No
v

20
20

De
c

20
20

Ja
n

20
21

M
ar

 2
02

1
Ap

r 2
02

1
M

ay
 2

02
1

Ju
n

20
21

Ju
l 2

02
1

Au
g

20
21

Se
p

20
21

Oc
t 2

02
1

No
v

20
21

De
c

20
21

Ja
n

20
22

Fe
b

20
22

M
ar

 2
02

2
Ap

r 2
02

2
M

ay
 2

02
2

Ju
n

20
22

Ju
l 2

02
2

Au
g

20
22

Se
p

20
22

Oc
t 2

02
2

No
v

20
22

De
c

20
22

Ja
n

20
23

Fe
b

20
23

M
ar

 2
02

3
Ap

r 2
02

3
M

ay
 2

02
3

Ju
n

20
23

Ju
l 2

02
3

Au
g

20
23

Se
p

20
23

Oc
t 2

02
3

No
v

20
23

De
c

20
23

Month-Year-Abbr

0

10

20

30

40

50

Co
un

t

Rug Pull
Scam

(a) Number of Rug Pulls & Scams by Month and Year

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year

0

1

2

3

4

5

6

Am
ou

nt
 S

to
le

n
(U

SD
)

1e9

(b) Amount Stolen at Time of Rug Pull by Year (USD)

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year

0

50

100

150

200

250
Co

un
t

(c) Number of Rug Pulls by Year

Figure 5.1: Rug pulls and scams since 2017, using data from comparitech [112]

5.1 Past User Story
In the span of two months, from October to November 2021, a fraudulent NFT
creator and X user known as Homer_eth executed five different NFT project rug
pulls, accumulating over $2.8 million in profits. Table 5.1 provides an overview of
Homer_eth’s rug pull projects, each with the launch date and estimated profit from rug
pulling the projects. The transaction graph in figure 5.2 shows the blockchain addresses,
depicted as EOA nodes, that the rug puller used and how they are connected through
transactions. Dashed arrows represent aggregated transactions, meaning the total
value that was transferred between two addresses over multiple transactions. Notably,
the graph is disconnected because there are no transactions that connect 0xf580 and
0xc8a6 to the other addresses controlled by Homer_eth.

Project Name Launch Date Estimated Profit (USD) NFT Collection Size

Ether Bananas 10/07/2021 125,000 750
Ether Monkeys 10/11/2021 1,770,000 10,000
Zombie Monkeys 10/15/2021 413,000 8888
Ether Reapers 10/20/2021 282,000 10,000
ETH Banana Chips 11/23/2021 208,000 5000

Table 5.1: Rug pull projects by Homer_eth

Chapter 5. Rug Pull Prevention Use Case 41

Philipp Stangl Master’s Thesis

3.5 ETH

Ether
Monkeys

2.5 ETH0x2bdd

Legend:

Smart Contract

Single Transaction

49
9.

85
 E

T
H

36
.2

5
E

T
H

49
9.

85
 E

T
H

0x872d

Ether
Bananas

36
.2

5
E

T
H

ETH Senders

1.1 ETH

10
5

ET
H

0xc3bc

10
6.

95
 E

T
H

Zombie
Monkeys

106.95 ETH

ETH
Banana
Chips

0xe396

50
.4

 E
T

H
50

.4
 E

T
H

EOA

Aggregated Transactions

Ether
Reapers

0xc8a6

65
.6

1
E

T
H

65
.6

1
E

T
H

1.5 ETH0xf580

10
5

E
T

H

Polygon
Bridge

1.
5

E
T

H

Shape
Shift

0.
08

 B
T

C

1A1d0xc3bc

Polygon EOA Bitcoin Address

Figure 5.2: Simplified transaction graph of Homer_eth’s NFT rug pulls, showing only
transactions that are directly related to the rug pulls

Bob’s story begins with a common enthusiasm for the burgeoning world of NFTs. His
journey into the NFT market is marked by excitement and optimism, spurred by the
success stories he sees online. Homer_eth, an NFT creator and X user, has caught the
attention of many people like Bob by sharing his NFT projects on X. His first NFT
collection Ether Bananas, consisting of 750 NFTs, was launched on October 7, 2021.

Only four days later, on October 11, Homer_eth continued with the release of Ether
Monkeys, followed by the release of Zombie Monkeys. The buzz around Homer_eth’s
projects, especially Ether Monkeys, which promised additional utility through a casino to
gamble in and a decentralized autonomous organization to govern the NFTs, according
to [115], attracted Bob. Being relatively new to the NFT market, Bob viewed this as
an opportunity not to be missed. He bought his first NFT from Homer_eth, an Ether
Reapers, and with that purchase, he was no longer just a bystander; he was now an
active participant in Homer_eth’s growing community.

Bob’s involvement in the community deepened over time. He engaged in discussions,
shared his excitement with fellow members, and reveled in the rumors of more
NFT launches in the future. His commitment paid off when he earned himself a
whitelist spot that allowed him to mint the upcoming NFT project ETH Banana Chips
by Homer_eth. Convinced of its potential, Bob did not hesitate to mint an ETH Banana
Chips NFT when the opportunity arose. With a click to confirm the transaction in
his browser wallet (e. g., MetaMask [116]), Bob became the owner of an ETH Banana
Chips NFT, unaware of the underlying risks associated with his investment. However,
the reality of the situation was far from the optimistic scenario Bob had envisioned.
Unknown to him, since Bob had a limited understanding of blockchain transactions,
the proceeds from the Ether Reapers mint were not being locked in the smart contract

Chapter 5. Rug Pull Prevention Use Case 42

Philipp Stangl Master’s Thesis

for future development as promised. Instead, they were directly funneled into the
deployer address owned by Homer_eth. From there, he would either later transfer
those mint proceeds to a new deployer address to fund his next rug pull or bridge the
proceeds to another blockchain, in an attempt to obfuscate his trail (known as chain
hopping), and deposit them to a centralized exchange to pay out his profits.

After the launch of ETH Banana Chips, a tense silence enveloped the community. For
months, there was no news from Homer_eth, no updates on the project, leaving
everyone to wonder about the future. It was not until March 2022 that Homer_eth
broke the silence with the announcement of one last NFT project, dubbed Froggy Frens.
Due to backlash from the community, he deleted his X account and vanished [115].

5.2 From Transaction Graph to Knowledge Graph

Methods to detect and prevent rug pulls require a semantically rich knowledge base to
discern patterns of fraudulent behavior from licit behavior. This includes differentiating
blockchain addresses by their users (individuals, protocols, exchanges) and the different
ways they interact with the blockchain. Therefore, the KG depicted in figure 5.3 should
semantically describe blockchain transactions to discern different types of transactions:
value transactions, such as mintMonkey and Transfer, and non-value transactions (absent
in transaction graphs), such as the deployment of a smart contract, denoted as Deploy.
These semantics allow it to describe (i. e., tag) sender and receiver addresses as NFT
minter and deployer, compared with the previously less descriptive ETH Sender and
EOA in figure 5.2. Additionally, the KG integrates off-chain data from the social
media platform X to provide a deeper understanding of the context and relationships
surrounding these rug pulls. The data integrated from X extends the KG with off-chain
user accounts (X Account) and their posts (X Post). For instance, this enables users
to establish a connection among previously unrelated entities, such as the deployer
address 0xc8a6, the X account Homer_eth, and his other blockchain addresses. Both,
blockchain addresses and social media accounts are connected to a real-world entity in
the KG. For brevity, these connections are not depicted in figure 5.3.

5.3 Alternative User Story

In an alternative scenario where Bob would have had access to Kosmosis-enabled
rug pull prevention, his introduction into the NFT market would have been safer,
beginning with his initial transaction to purchase an Ether Reapers NFT.

As soon as Bob initiated his transaction, the rug pull prevention mechanism would have
accessed the KG to analyze the rug pull risk of the contract. Based on the integrated
knowledge from X, the system would have been able to link the contract Bob was
about to interact with to all of Homer_eth’s prior blockchain activity. The KG would
have revealed a critical anomaly. Instead of the mint proceeds being transferred to the
contract address of the project for future development, they were being diverted to
the Ether Reapers deployer address via the MintReaper function. With smart contracts

Chapter 5. Rug Pull Prevention Use Case 43

Philipp Stangl Master’s Thesis

posted

posted

Homer
_eth

Transfer
3.5 ETH

Ether
Monkeys

Tr
an
sfe
r

2.5
 E

TH

0x2bdd

Legend:

NFT Account X Account

Transaction X Relation

D
ep
lo
y

m
intM

onkey
499.85 ETH

M
in
tB
an
an
a

36
.2

5E
TH

m
intM

onkey
499.85 ETH

Deployer

0x872d

Ether
Bananas

D
eploy

M
in
tB
an
an
a

36
.2

5
ET

H

NFT Minters

announces

an
no
un
ce
s announces

Transfer

1.1 ETH

D
eposit

105 ETH

0xc3bc

MintMonkey
106.95 ETH

Zombie
Monkeys

D
eploy

M
in
tM

on
ke
y

10
6.

95
 E

TH

Deploy
Ether
Reapers

mintReaper
65.61 ETH

0xc8a6 mintReaper
65.61 ETH

ETH
Banana
Chips

0xe396

D
ep
lo
y

M
intBananachips

50.4 ETH
M
intBananachips

50.4 ETH

poste
d

annou
nces

Transfer
1.5 ETH0xf580

EOA

po
ste
d

X Post

Post

Post

Post Post

Transfer
105 ETH

Polygon
Bridge

0xc3bc

U
nl
oc
k

0.
08

 B
TC

1A1d

Transfer
1.5 ETH

Shape
Shift

Polygon EOA UTXO Account Contract Account

Figure 5.3: KG of Homer_eth’s NFT rug pulls

acting as an automated and trustless intermediary, where the code of the contract
dictates the flow of funds according to predefined rules, this pattern of fund diversion
is absent in legitimate projects. When funds are sent directly to the address of a team
member — in this case, the deployer address — they can be moved to exchanges or
other addresses with ease (i. e., pulling liquidity from the project without fulfilling
the promises). This is a common tactic in rug pulls, where the developers abandon
the project and disappear with investor funds, therefore, signaling potential rug pull
behavior. Detecting this anomaly, the system would have immediately issued a rug
pull warning to Bob, prompting him to make an informed decision by asking whether
he wishes to proceed with the transaction despite the identified risk. This proactive
approach empowers Bob to reconsider his decision with full awareness of the potential
danger, offering him a chance to opt out before potentially falling victim to a rug pull.

Chapter 5. Rug Pull Prevention Use Case 44

Philipp Stangl Master’s Thesis

5.4 Technical Implications

The previous section introduced an alternative user story, which set the foundation
for exploring the technical implications for the Kosmosis architecture. To address
these implications, the KG must effectively combine on- and off-chain data, a process
underpinned by an ontology modeled through CQs following the competency question-
driven ontology authoring methodology, as outlined in section 5.4.1. Furthermore,
to ensure the KG construction pipeline operates as intended, functional and non-
functional requirements are compiled and systematically outlined in sections 5.4.2 and
5.4.3, respectively.

5.4.1 Competency Questions

The following CQs are formulated based on the user story presented in section 5.3 to
ensure the ontology supports the detection of potential rug pulls.

1. Binary questions

CQ1 Does the address 0x872d belong to the real-world entity Homer_eth?
This tests whether blockchain addresses can be successfully linked to their
corresponding real-world entity. The system should answer with true. Like-
wise, true should be returned for Homer_eth’s other Ethereum addresses.

CQ2 Did 0xc8a6 deploy the NFT account Ether Reapers?
The system is expected to return true. This question explores whether the
semantics in blockchain transactions (e. g., deploy, mintReaper) get extracted.

2. Selection questions

CQ3 Which blockchain addresses belong to Homer_eth on the Ethereum blockchain?
This question probes if identical addresses on multiple blockchains can be
uniquely identified. For instance, the address 0xc3bc should be returned
only once.

CQ4 How are the blockchain transactions of Homer_eth linked to his social media accounts
and posts on the social media platform X?
This question tests whether the system can connect blockchain addresses
to social media activities. The system should return the RDF triples that
describe that Homer_eth created at least one post on X, and in this post,
one of his NFT contract addresses is mentioned.

CQ5 Can the abnormal transaction pattern of fund diversion from the Ether Reapers
contract to its deployer address be identified?
This question focuses on recognizing transaction patterns that deviate from
legitimate NFT project behavior, which could indicate a rug pull. The system
should return the RDF triples that describe that NFT minters transferred
Ether to the NFT contract via the MintReaper function and, likewise, the
amount of funds that was transferred from the Ether Reapers contract to the
deployer account 0xc8a6.

Chapter 5. Rug Pull Prevention Use Case 45

Philipp Stangl Master’s Thesis

3. Counting questions

CQ6 How many NFT token accounts did Homer_eth deploy on Ethereum?
It is expected that the number 6 is returned. This question tests if the system
is able to distinguish among the various types of blockchain accounts, such
as externally owned, token, and non-token accounts.

CQ7 How many Ethereum addresses minted an Ether Reapers NFT?
It is expected that the number 379 is returned. This question solidifies if the
system can extract and identify the purpose of blockchain transactions — in
this case, if the purpose of the transaction is to mint an NFT.

5.4.2 Functional Requirements

In the following, the functional requirements for Kosmosis are outlined.

FR1 Blockchain Data Ingestion
The system shall continuously ingest all mined transactions as JSON-formatted
data from the Bitcoin, Ethereum, and Polygon blockchains. Each transaction
will include, at a minimum, the transaction ID, sender and receiver addresses,
transaction amount, and timestamp. To keep the KG up to date with the latest
blockchain state, the system shall listen for new transactions from blockchain
archive nodes via websocket connections.

FR2 X Posts Ingestion
The system will authenticate with the X Filtered stream API using bearer token
authentication to fetch posts based on predefined rules (e. g., “bc1” to look for
posts with Bitcoin addresses). The posts should be fetched as JSON-formatted
data. Required data fields include post ID, timestamp, content, and author ID.

FR3 Enrichment Data Ingestion
The system integrates enrichment data from the Golden KG using its RESTful
API to provide additional information for real-world entities. Ingestion shall be
triggered every time a new real-world entity is added to the KG. Enrichment
data should be requested using the X user ID, if available.

FR4 Blockchain Address Relation Extraction
The system shall extract the relationship between addresses on a per-transaction
basis. This includes the extraction of semantics in blockchain transactions (i. e.,
decoding the input data) to determine the type of relationship. Relationship
types may include sender↔receiver (transfer), token contract↔deployer (contract
creation), and NFT contract↔NFT minter (mint).

FR5 Real-World Entity Canonicalization
The system shall identify real-world entities across blockchain transactions and
social media data, acknowledging that a real-world entity can have different
identifiers in these sources (e. g., blockchain addresses, social media profile IDs).
A real-world entity is considered canonicalized if it exists only once with its name
in the KG and has an associated X user ID and blockchain address.

Chapter 5. Rug Pull Prevention Use Case 46

Philipp Stangl Master’s Thesis

FR6 Incremental Updates
As new data becomes available, the pipeline must extract relevant knowledge
and integrate it into the existing KG without a full rebuild. This includes adding
new RDF triples and updating existing ones if necessary.

FR7 RDF Mapping
Following data processing, the system will map the processed (un-, semi-, or
structured) data to the RDF format in accordance with a defined ontology that is
applied to the KG.

FR8 SPARQL API
The KG is stored in a triplestore that provides a SPARQL API to serve two primary
purposes: enabling the pipeline to load results into the triplestore and providing
an interface for external applications to query and access the constructed KG.

5.4.3 Nonfunctional Requirements

In addition to the functional features that Kosmosis should offer, there are also several
nonfunctional requirements about how these features should be implemented.

NR1 Scalability
A scalable system ensures the KG construction pipeline can handle future growth
and evolving data demands as either (i) the volume of blockchain transactions
and/or (ii) the number of data sources increases. Scalability should be achievable
through modular components that can be added as needed.

NR2 Data Quality
Ensuring data quality is crucial for the reliability and trustworthiness of the
resulting KG. The system must ensure that the KG entities are free from errors
and inaccuracies and do not exhibit any contradictions or disparities within
themselves or when compared to other sources.

Chapter 5. Rug Pull Prevention Use Case 47

Philipp Stangl Master’s Thesis

Chapter 6

Kosmosis Approach

This chapter presents the Kosmosis approach and its core components. Section 6.1
establishes the foundation for understanding the design and functionality of Kosmosis
by providing an architectural overview. Subsequently, section 6.2 discusses the applied
ontology, a crucial element for structuring and interpreting data within the system.
The following sections describe the KG construction pipeline (section 6.3) and data-
processing workflows, including blockchain data processing in section 6.4, natural
language text processing in section 6.5, and enrichment data processing in section 6.6.
Each of these workflows contributes to extracting knowledge from raw data.

6.1 Architectural Overview of Kosmosis

To incrementally construct a KG that integrates data in a continuous and periodic way,
a multistage pipeline is utilized, as proposed in [117]. This pipeline is composed of
three stages: data ingestion, data processing, and knowledge storage. These stages are
depicted in figure 6.1, illustrating the sequential flow from data ingestion to the final
storage of structured knowledge.

The initial stage, data ingestion, captures the raw data from the primary data sources
as well as the enrichment data sources. This phase is characterized by its versatility in
the frequency of data acquisition as follows:

• Continuous, to capture recently mined transactions from blockchain nodes via
websocket connections.

• Incremental, to fetch new social media posts from the social media platform X

via the X Filtered stream API endpoint.

• Periodic, to pull new entries from structured data sources like relational databases
at regular intervals.

• Event-based, to capture data in response to emitted events, such as fetching
supplementary information from an external knowledge base when a new entity
is added to the KG.

48

Philipp Stangl Master’s Thesis

Legend: Data Flow Knowledge Extraction StepLoad Subgraph

Triplestore

Address Relation
Extraction

Knowledge Storage

Attributions
Database

(structured data)

Enrichment Data Sources

Golden Knowledge Graph API
(structured data)

Primary Data Sources

Data Ingestion

Address TaggingWebsocket
(continuously)

Text
Entity Resolution

Relation
Extraction

Named Entity
Recognition

Attributions
Entity Resolution

Golden Entity
Resolution

Blockchain
Entity Resolution

X Filtered Stream API
(unstructured data)

HTTP Requests
(incrementally)

RDBMS Client
(periodically)

HTTP Requests
(event-driven)

Connector

Data Processing

Blockchain Node
(semi-structured

data)

Knowledge Processing Step

Figure 6.1: Overview of Kosmosis, the incremental KG construction pipeline

Following data ingestion, knowledge is extracted from the data and processed in the
data processing stage. This stage comprises four distinct data-processing workflows
to processes the ingested data depending on its data source. A data-processing
workflow can have knowledge-extraction steps (e. g., relation extraction), if required,
and knowledge-processing steps (e. g., blockchain entity resolution).

In the third and final stage, the refined data is loaded into the knowledge storage, where
it is systematically organized within a triplestore. Production-ready triplestores are for
example Apache Jena TDB [118], Ontotext GraphDB [119], and OpenLink Virtuoso [120].
For the persistence of the KG, Ontotext GraphDB was the database of choice, motivated
by prior experience with it in [121]. The triplestore can then be used for semantic
querying capabilities to extract actionable insights from the KG for downstream tasks.

6.2 Knowledge Graph Ontology

This section introduces the ontology specifically designed to formalize the concepts
and relations within the domain of crypto assets, with a particular focus on fraud
investigations. The design of the ontology is aligned with the CQs delineated in
section 5.4, which guided the development of the ontology.

The KG ontology is written with RDF, RDFS, and OWL and comprises four concepts:
blockchain account, blockchain transaction, social media account, and real-world
entity. Each class can have datatype properties Datatypeowl:dataTypePropertyowl:Class or
object properties owl:objectPropertyowl:Class owl:Class and can be a sub class of another
class rdfs:subClassOfowl:Class owl:Class in the ontology. Furthermore, enumerated classes
specifically define a set of permissible RDF resources (i. e., a list of Instance values).

Chapter 6. Kosmosis Approach 49

Philipp Stangl Master’s Thesis

6.2.1 Blockchain Account Concept

The blockchain account concept (depicted in figure 6.2) models blockchain addresses
and their characteristics as accounts. A blockchain account is categorized as either an
EOA, contract account, or UTXO account.

xsd:hexBinary accountCode

xsd:dateTime createdAt

xsd:string

tokenName

addressBlockchain Account

rdfs:subClassOf

hasContractTag
{Scam, Rug Pull, ...}

Contract Account

rdfs:subClassOf

deployed Externally Owned Account

rdfs:subClassOf

implements
{ERC-20, ERC-721}

Token Account

rdfs:subClassOf

Non-Token Account

xsd:string

rdfs:subClassOf

UTXO Account

hasAccountTag
{NFT Minter, Deployer, ...}

Contract Tag

Tag

Account Tag

Token Standard

rdfs:subClassOf

existsOn
{Bitcoin, Ethereum}

Blockchain

Figure 6.2: Illustration of the blockchain account concept

• Blockchain: A distributed database that maintains a continuously-growing list
of records, called blocks, secured from tampering and revision.

• Blockchain Account: This is the main entity of the account concept. An account
can represent any blockchain user who can own cryptocurrencies or tokens, and
send transactions on the network. An account can be uniquely identified by
its address and the blockchain it exists on. Ethereum addresses have a fixed
format and encoding as hexadecimal numbers xsd:hexBinary . This is not the case
for Bitcoin addresses that have variable format and encoding (Base58Check or
Bech32) addresses [63]. As a result, addresses are modeled with the more generic
datatype xsd:string and application-level validation logic outside the triplestore
to allow for greater flexibility when integrating other blockchains with different
format (e. g., Solana uses a 32-byte array, encoded with the Base58 alphabet [45]).

• EOA: An Blockchain Accountrdfs:subClassOfExternally Owned Account is controlled by a
private key and is typically associated with a real-world entity. This could be a
person or an organization that controls an externally owned account. They can
send transactions and deploy smart contracts.

• Contract Account: A Blockchain Accountrdfs:subClassOfContract Account is a smart
contract on the blockchain. A contract account has a non-empty associated EVM
code to perform operations on the blockchain when transactions are sent to them.

Chapter 6. Kosmosis Approach 50

Philipp Stangl Master’s Thesis

• Tag: Tags help to identify the owner of a blockchain address or the type of real-
world entity it represents. Tags can be used to mark addresses associated with
fraudulent activity, such as a Scam or Rug Pull . Instead of defining different
subclasses for accounts, associating tags with accounts has shown to be a more
flexible approach during the design cycle of Kosmosis.

• Account Tag: An Tagrdfs:subClassOfAccount Tag holds additional information
associated with an externally owned account or UTXO account. For instance, an
account tag can be Exchange Deposit , or Deployer .

• Contract Tag: Similar to an account tag, a Tagrdfs:subClassOfContract Tag is
additional information associated with a contract account. However, the set of
contract tags is disjoint with the set of account tags. For instance, a contract can
be tagged as a Scam or Rug Pull .

• Account Code: The executable EVM bytecode of a smart contract in xsd:hexBinary

format that is executed when an externally owned account triggers the execution
via a call transaction.

• Non-Token Account: A Contract Accountrdfs:subClassOfNon-Token Account handles
operations other than managing tokens. For instance, a voting contract or custom
smart contract.

• Token Account: A Contract Accountrdfs:subClassOfToken Account manages the logic
and ownership information of a particular token. This includes managing tokens,
such as USD Coin [47], as well as NFTs, for example, CryptoPunks [48].

• Token Standard: The ERC-20 [66] and ERC-721 [67] token standards define a set
of rules for creating fungible or non-fungible tokens. Both token standards are
supported on EVM-compatible blockchains (e. g., Ethereum, Polygon). The token
standards are used to further differentiate between the type of token a smart
contract manages.

6.2.2 Blockchain Transaction Concept

The blockchain transaction concept (figure 6.3) covers the mechanisms through which
crypto assets are transferred and managed on blockchains. This concept encompasses
a variety of transaction types, including UTXO and account-based transactions, each
with distinct processes for handling asset transfers.

• Transaction: Transactions are messages between two accounts that may transfer
Ether and may contain a payload. Transactions always originate from an external
account that is controlled by an external actor by means of a private key. Instances
of the transaction class can have the following properties: value, the amount
of a crypto asset being transferred; minedInBlock, the block height at which
the transaction was added to the blockchain; minedOn, describing on which
blockchain the transaction was minded; and action, the specific action being
taken, such as transferring tokens or minting an NFT.

Chapter 6. Kosmosis Approach 51

Philipp Stangl Master’s Thesis

Transaction
Output

Transaction
Input

Blockchain Externally Owned
Account

Contract
Account

from

creates

rdfs:subClassOf

calls

Call
Transaction

rdfs:subClassOf to

Value
Transaction

hasOutputhasInput

action minedInBlock

xsd:unsignedInteger

minedOn
{Bitcoin, Ethereum}

value

xsd:unsignedInteger

from/to

unlocks locks

UTXO Account

Transaction

xsd:string

rdfs:subClassOf rdfs:subClassOf

UTXO Transaction Account Transaction

rdfs:subClassOf

Create
Transaction

Figure 6.3: Illustration of the blockchain transaction concept

For UTXO-based blockchains:

• UTXO Transaction: When a Transactionrdfs:subClassOfUTXO Transaction is made, the
output of a previous transaction is referenced as the input for the new transaction,
showing the movement of currency.

• Transaction Output: They are created by the sender and represent the destination
of a transaction. A single transaction can have multiple outputs, allowing a
sender to have multiple recipients in one transaction. Once a transaction output
is created, it remains unspent until it is used in a new transaction. A UTXO
account adds a claiming condition (ScriptPubKey) to the transaction output that
locks the output to the recipient.

• Transaction Input: The transaction input references previous UTXOs that are
being being spent in a transaction. Each UTXO represents the remaining funds
after a transaction and is associated with a UTXO account. In order to spend
a UTXO in a transaction, a UTXO account unlocks the transaction input by
submitting a valid ScriptSig.

For account-based blockchains:

• Account Transaction: An Transactionrdfs:subClassOfAccount Transaction represents
the transfer of tokens between accounts which have balances, as opposed to
UTXO where previously unspent outputs are spent.

• Value Transaction: A Account Transactionrdfs:subClassOfValue Transaction does not
call a function in a smart contract and does not create a new smart contract. Even
though it is called value transaction, transactions with a value of 0 can be a value
transaction. They can have associated input data (e. g., a text message) as long as
this input data does not trigger the execution of smart contract code.

Chapter 6. Kosmosis Approach 52

Philipp Stangl Master’s Thesis

• Call Transaction: A Account Transactionrdfs:subClassOfCall Transaction is a type of
transaction in which an externally owned account interacts with a contract
account by calling a method in the code of its underlying contract.

• Create Transaction: A Account Transactionrdfs:subClassOfCreate Transaction creates a
new smart contract on the blockchain.

6.2.3 Social Media Account Concept

The social media concept, depicted in figure 6.4, provides a structured representation
of how data is related within a social media context, particularly one that involves
interactions with blockchain technology.

xsd:unsignedLong

username

xsd:string

createdAt

xsd:dateTime

Blockchain
Account

XUserId XPostId

content

xsd:string

postedAt

xsd:dateTime

mentions

xsd:unsignedLong

Social Media
Post

rdfs:subClassOf

X PostpostedOnX

posted
Social Media

Account

rdfs:subClassOf

controls
Real-World

Entity

X Account

Figure 6.4: Illustration of the social media account concept

• Social Media Account: This represent a social media profile controlled by a
real-world entity, such as an individual or an organization. Regardless of the
platform, a social media account is characterized by two attributes: it has a
creation date and time (createdAt), in xsd:dateTime format, and it is identified
by a username, which is an alphanumeric xsd:string .

• X Account: An Social Media Accountrdfs:subClassOfX Account represents a social
media account on the social media platform X. This could be an account that
belongs to a public figure or an organization that is associated with the crypto
asset sector. An X account can be uniquely identified by the XUserId of type
xsd:unsignedLong .

• Social Media Post: A social media post represents individual posts on social
media platforms. Social media accounts can create and share either a single
post or a series of posts. Each post is characterized by its content, formatted
as xsd:string in natural language, and the time it was published (postedAt in
xsd:dateTime format). In case a social media post mentions the address of a

blockchain account, that can be an externally owned, contract, or UTXO account.

• X Post: An Social Media Postrdfs:subClassOfX Post represents a post, such as an
announcement, can be uniquely identified by its XPostId, which is of the same
data type as XUserId xsd:unsignedLong .

Chapter 6. Kosmosis Approach 53

Philipp Stangl Master’s Thesis

6.2.4 Real-World Entity Concept

The real-world entity concept, as illustrated in figure 6.5, describes and relates real-
world entities to blockchain and social media accounts.

xsd:dateTime

founded

description

xsd:string

controls

owns

canonicalized Real-World Entity

rdfs:subClassOf

Individual

rdfs:subClassOf
name

xsd:string

Blockchain Account

Social Media Account

homepageURL

xsd:string

Organization

xsd:boolean

Figure 6.5: Illustration of the real-world entity concept

• Real-World Entity: An entity in the real world, such as an Individual or an
Organization. It can own one or multiple blockchain accounts and control one
or multiple social media accounts. A real-world entity has a name of data type
xsd:string . Further, it can have a description that provides additional information

about the entity. A real-world entity may not be canonicalized at first. For instance,
if the same real-world entity exists multiple times with different names in the KG
or if two blockchain addresses are considered to belong to the same real-world
entity, but there is not enough evidence to assign a name.

• Individual: An Real-World Entityrdfs:subClassOfIndividual is a single person in the
real world. An individual inherits the name and description attribute from its
superclass the Real-World Entity.

• Organization: The Real-World Entityrdfs:subClassOfOrganization class represents
structured groups of people (i. e., organizations). An organization has a founding
date, which is in xsd:dateTime format, and typically has an associated homepage
URL in xsd:string format.

6.3 The Knowledge Graph Construction Pipeline

The KG construction pipeline consists of four main classes (visualized in figure 6.6):
Pipeline, DataProcessingWorkflow, ProcessingStep, and IngestionStrategy. The
Pipeline class serves as the central orchestrator for the data processing workflows and
implements the singleton pattern to ensure that there is only a single pipeline instance.
To manage the life cycle of data processing workflows it exposes four methods:

Chapter 6. Kosmosis Approach 54

Philipp Stangl Master’s Thesis

Pipeline

+ _instance: Pipeline

+ get_instance(cls)

+ add_workflow(data_processing_workflow)

+ remove_workflow(data_processing_workflow)

+ execute_workflows()

+ stop_workflows()

DataProcessingWorkflow

+ id: uuid4

+ strategy: IngestionStrategy

+ steps: ProcessingStep[]

+ add_step(processing_step)

+ remove_step(processing_step)

<<Interface>>
ProcessingStep

+ execute(data)

<<Interface>>
IngestionStrategy

+ start(workflow)
+ stop()

Figure 6.6: UML class diagram for the pipeline

• add_workflow adds a DataProcessingWorkflow to the pipeline.

• remove_workflow removes a DataProcessingWorkflow from the pipeline.

• execute_workflows starts the execution of all defined processing workflows.

• stop_workflows shuts down running processing workflows gracefully.

The DataProcessingWorkflow class acts as the context in the strategy pattern and
represents the individual workflows that are managed by the Pipeline. It allows
different ProcessingStep implementations (strategies) to be added or removed and
executed in sequence. Each DataProcessingWorkflow can be identified by a universally
unique identifier (UUID) and has the following two methods:

• add_step adds a ProcessingStep to the processing workflow.

• remove_step removes a ProcessingStep from the processing workflow.

The ProcessingStep interface defines a common interface for executing a step, and
each concrete processing step class implements its specific behavior. For ingesting data,
the IngestionStrategy defines a common set of methods to ensure that all ingestion
strategies follow a uniform approach to starting and stopping data ingestion.

<<Interface>>
IngestionStrategy

+ start(data_processing_workflow)
+ stop()

ContinuousIngestion

+ running: bool

+ listener: WebsocketListener | HTTPListener

+ start(data_processing_workflow)

+ setup_rules(x_filtered_stream_rules)

+ stop()

PeriodicIngestion

+ interval: int

+ running: bool

+ extractor: DataExtractor

+ start(data_processing_workflow)

+ stop()

EventBasedIngestion

+ running: bool

+ emitter: EventEmitter

+ start(data_processing_workflow)

- handle_event()

+ stop()

Figure 6.7: UML class diagram of the concrete ingestion strategies

Chapter 6. Kosmosis Approach 55

Philipp Stangl Master’s Thesis

Figure 6.7 depicts the different ingestion strategies the KG construction pipeline
uses. The IngestionStrategy interface mandates the implementation of two methods:
start to initiate ingestion with a specified data-processing workflow and stop to
terminate the process. The EventBasedIngestion class has an EventEmitter for event-
triggered ingestion. It adds a private handle_event method for internal event handling.
For the ContinuousIngestion class, its listener is polymorphic, capable of being a
WebsocketListener or HTTPListener, which facilitates continuous data streaming via
websockets as well as incremental ingestion through long-lived HTTP requests. Lastly,
the PeriodicIngestion class is characterized by an interval attribute for scheduling
data extraction events and a DataExtractor component to execute the data retrieval.

The client implements a get_processing_workflow_factory function that returns an
instance of a factory class based on the ingestion_type as follows:

• INCREMENTAL — to create a workflow specifically for the X Filtered stream

• EVENT — to create a workflow that is triggered by events

• STREAM — to create a workflow that continuously ingests data in real time

• SCHEDULED — to create a workflow that ingests data at predefined intervals

6.4 Blockchain Data-Processing Workflow

The blockchain data-processing workflow continuously ingests new transactions from
the blockchain via websocket connections. Websockets enable open and interactive
communication sessions between a client and server, facilitating real-time data transfer
without the need for repeated polling. Figure 6.8 depicts the classes responsible for the
blockchain data processing. Each class represents a processing step and is described in
the following sections.

AddressRelationExtraction

+ execute_processing(transaction)

- extract_relation(transaction)

- extract_abi_from_bytecode(code)

AddressTagging

+ execute_processing(transaction)

- tag_address(addresses)

BlockchainEntityResolution

+ execute_processing(transaction)

- load_rdf_subgraph(knowledge_graph)

- match_entities(tx_entities)

- cluster_addresses(subgraph, tx_entities)

- store_entities(knowledge_graph, entities)

- store_relations(knowledge_graph, relations)

<<Interface>>
ProcessingStep

+ execute_processing(transaction)

Figure 6.8: UML class diagram of the blockchain data-processing workflow

Chapter 6. Kosmosis Approach 56

Philipp Stangl Master’s Thesis

6.4.1 Address Relation Extraction

The address relation extraction module is designed to decode a blockchain transaction
input data by using the ABI of the smart contract. This enables the module to extract
semantic information from transactions where an EOA interacts with a smart contract,
including the purpose of a transaction derived from the smart contract function that
is called, and context in form of arguments that are passed to this function (e. g., the
number of NFTs to be minted in a transaction). Consider the following raw transaction
in listing 6.1 that was obtained from Ethereum for the Homer_eth rug pull use case.
Herein, the address 0xB24 transfers 0.08 ETH to 0x0a5, a token contract named Ether
Reapers (retrieved through calling the name function of the contract). The rest of this
interaction is encoded in the input data, which requires the ABI for decoding.

{
"method": "eth_get_transaction",
"params": {

"result": {
"transaction": {

"blockHash": "0x3d3 ...577",
"blockNumber": 13456446,
"from": "0xB24",
"gas": 255099,
"gasPrice": 110054388777,
"maxFeePerGas": 188538774740,
"maxPriorityFeePerGas": 2500000000,
"hash": "0x819",
"input": "0xa844 ...001",
"nonce": 57,
"to": "0 x0a5b9b930fc5bE638232D8b9b69Cb5B46249c06e",
"transactionIndex": 208,
"value": 80000000000000000,
"type": 2,
"accessList": [],
"chainId": 1,

}
}

}
}

Listing 6.1: Transaction on the Ethereum blockchain

First, the ABI is requested from Etherscan [21] and Sourcify [122] via their respective
RESTful APIs. If the ABI cannot be successfully fetched from one of the aforementioned
sources, the module resorts to reconstructing the ABI from the smart contract bytecode,
which is available at any time since the bytecode is deployed on the blockchain. This
reconstruction, outlined in algorithm 1, enables the decoding of transactions and the
interaction with smart contracts beyond their compiled state.

Chapter 6. Kosmosis Approach 57

Philipp Stangl Master’s Thesis

Algorithm 1 Extract ABI from Bytecode

1: procedure AbiFromBytecode(bytecode)
2: p← disasm(bytecode), abi← empty array
3: for each (selector, offset) in p.selectors do
4: if offset not in p.destinations then
5: continue
6: end if
7: f n← p.destinations[offset]
8: tags← functionTags(fn, p.destinations)
9: abiFunction← new AbiFunction with payable = ¬p.notPayable[offset]

10: mutability← ”nonpayable”
11: if abiFunction.payable then
12: mutability← ”payable”
13: else
14: hasStateChangingOps← false
15: hasStateReadingOps← false
16: for opcode in [SSTORE, CREATE, CREATE2] do
17: if opcode in tags then
18: hasStateChangingOps← true
19: break
20: end if
21: end for
22: if not hasStateChangingOps then
23: for opcode in [SLOAD] do
24: if opcode in tags then
25: hasStateReadingOps← true
26: break
27: end if
28: end for
29: if hasStateReadingOps then
30: mutability← "view"
31: else
32: mutability← "pure"
33: end if
34: end if
35: end if
36: abiFunction.stateMutability← mutability
37: if tags has RETURN or mutability = ”view” then
38: add output to abiFunction.outputs
39: end if
40: if tags has CALLDATA[LOAD/SIZE/COPY] then
41: add input to abiFunction.inputs
42: end if
43: add abiFunction to abi
44: end for
45: return abi
46: end procedure

Chapter 6. Kosmosis Approach 58

Philipp Stangl Master’s Thesis

The initial step involves the disassembly of the bytecode of the smart contract. This
process, referred to as DISASM, decomposes the bytecode into a series of readable
opcodes and associated data. Disassemblers (e. g., pyevmasm [123]) facilitate this step
by translating the bytecode back into a form that represents the original instructions
and operations defined within the smart contract.

Following disassembly, the algorithm initializes by creating an empty array intended
to store the ABI and defining lists of opcodes that either change the state or read
from the state of the blockchain. These opcodes include SSTORE, CREATE, CREATE2
for state-changing operations and SLOAD for state-reading operations, reflecting the
fundamental actions a smart contract on the EVM can perform [44].

The core of the algorithm iterates over selector/offset pairs within the disassembled
bytecode. Selectors serve as identifiers for functions in the EVM, facilitating the
mapping to the corresponding functionality. If a given offset does not match any
destination within the program’s destinations, the iteration skips to the next pair,
ensuring only valid functions are considered. Upon finding a valid function destination,
the algorithm retrieves the function definition and assigns tags based on its behavior.
This tagging process involves analyzing the opcodes contained within the function
and any related jump destinations. The purpose is to categorize functions according to
how they alter the blockchain state, using a depth-first search algorithm to navigate
through the function call graph.

An AbiFunction object is then created for each valid function, with its payable status
determined inversely by the presence of a notPayable marker at the corresponding
offset. The algorithm next assigns mutability attributes (nonpayable, payable, view,
or pure) based on whether the function alters state, reads state, or neither. This
classification is crucial for understanding how functions interact with the blockchain
and their implications on transaction costs and permissions.

Finally, the algorithm decides on the inclusion of inputs and outputs in the function
signature, informed by the presence of specific tags. For instance, tags indicating data
retrieval or state mutation influence whether parameters are inputs or outputs.

Returning to the transaction example in Listing 6.1, with the ABI of the smart contract,
it is now possible to gain additional context about the transaction by decoding:

• the input data of the transaction: mintReaper(uint256 _times), which includes
both the name of the function being called mintReaper and the name of the
argument _times with its data type uint256.

• the input argument(s) that were passed as input data to the function mintReaper
to determine the number of NFTs to be minted in a single transaction. In this
instance, the quantity is determined by the _times argument, which is set to 1.

Combined with the previously known information that 0.08 ETH1 were transferred and
the recipient 0x0a5 is an NFT contract, dubbed Ether Reapers, this allows to describe
the action of this transaction as “0xB24 minted 1 Ether Reapers NFT for 0.08 ETH.”

1 Transaction value is denoted in wei, the smallest denomination of ETH. 1 ETH = 1 · 1018 wei.

Chapter 6. Kosmosis Approach 59

Philipp Stangl Master’s Thesis

6.4.2 Address Tagging

Although the exact identity of a real-world entity controlling a blockchain address is
often times unknown, it can still be categorized and tagged based on prior blockchain
activities. The address tagging module tags the sender and receiver addresses based on
their extracted relationship from the preceding address relation extraction module. For
instance, an EOA deploying a smart contract is tagged as deployer in case of a contract
creation transaction. Likewise, if an EOA is sending Ether to an NFT contract T via a
contract function containing the word “mint,” the EOA is tagged as NFT minter of T.

Listing 6.2 shows the processed transaction after the address relation extraction and
address tagging steps. The transaction object has three additional properties: action
describes the purpose of the transaction, decodedInput is the decoded input data,
and inputArgs are the input arguments that are passed to a function call in the input
data. Properties that are not stored in the KG (e. g., gasPrice) are removed from the
transaction object. The processed transaction has two additional entries for sender
and receiver, each with a contract, classes, and tags property. The classes property
indicates the class according to the ontology, and tags are the address tags. In case of
a smart contract, a name property for the contract name is added.

{
"blockchain": "Ethereum",
"transaction": {

"action": "Mint NFT",
"blockNumber": 13456446,
"hash": "0x819",
"sender": "0xB24",
"recipient": "0x0a5",
"nonce": 57,
"value": 80000000000000000,
"decodedInput": "mintReaper(uint256 _times)"
"inputsArgs": [{ "_times": 1 }]

},
"sender": {

"contract": false,
"classes": ["Externally Owned Account"],
"tags": ["Ether Reapers Minter"],

},
"recipient": {

"contract": true,
"name": "Ether Reapers",
"classes": ["Token Contract", "ERC721"],
"tags": []

}
}

Listing 6.2: Processed transaction after address relation extraction and tagging

Chapter 6. Kosmosis Approach 60

Philipp Stangl Master’s Thesis

6.4.3 Blockchain Entity Resolution

The blockchain entity resolution step is the final module in the blockchain data-
processing workflow. This module is responsible for identifying unique entities
represented in the blockchain data. This involves distinguishing among different types
of entities (e. g., blockchain accounts, transactions) and ensuring that each entity is
uniquely identified within the KG. Further, it is responsible for linking blockchain
addresses to either new or existing real-world entities in the KG based on their
interactions on the blockchain or by mentions on social media.

Entity resolution begins with a request to the KG to receive RDF triples that are relevant
to the resolution process based on the processed blockchain transaction, including:

• Blockchain account triples based on the blockchain addresses in the transaction.

– Account tags Account TaghasAccountTagExternally Owned Account based on past
transaction behavior

– Contract tags Contract TaghasContractTagContract Account for smart contracts

– BlockchainAccountownsReal-World Entity to account for blockchain accounts
that are already linked to a real-world entity

– Externally Owned Account deployed Contract Account to determine if an EOA is a
contract deployer

• Transaction triples for previous transactions made by the sender of the transaction.
The transaction nonce can be used to determine how many transactions the
address already made. The amount of transactions is limited to 100 to ensure the
subgraph does not become too large.

– Prior Externally Owned AccountfromValue Transaction of the sender of an account-
based transaction to consider past interactions with other EOAs

– Prior Contract AccountcallsCall Transaction by the sender of an account-based
transaction to consider past smart contract interactions

– Prior UTXO AccounttoUTXO Transaction spent by the sender of a UTXO

– Amount/value xsd:unsignedIntegervalueTransaction of each transaction

– Timestamp xsd:unsignedIntegerminedInBlockTransaction of each transaction

• Social media triples provide additional information that can aid in linking
blockchain accounts to real-world entities.

– Blockchain AccountmentionsX Post for X mentions of a blockchain address

– X PostpostedOnXX Account to get the author of the X post mentioning
the address of the blockchain account

– Content content xsd:stringX Post of each X post

– Timestamp postedAt xsd:dateTimeX Post of each X post

Chapter 6. Kosmosis Approach 61

Philipp Stangl Master’s Thesis

To identify potential duplicates, the system matches the entities from the RDF triples
with the entities contained in the transaction object (e. g., listing 6.2), which is currently
being processed. Once the entities are matched and potential duplicates are removed,
the system continues with linking the blockchain addresses, that are involved in the
transaction, to real-world entities. The linking is done in the following steps:

1. Canonicalized real-world entities: First, the system checks if the sender or recipient
address, or both, is linked to a canonicalized real-world entity, identified through
RDF triples that confirm the real-world entity owns the blockchain account.

2. Social media-based linking: If either none or one of the addresses is not yet linked
to a real-world entity, the system checks if there are any social media mentions
of that blockchain addresses that can be used to link the blockchain address to a
real-world entity.

3. Transaction-based linking: If still none or one of the addresses is not yet linked
to a real-world entity, clustering algorithms based on the heuristics outlined in
section 4.2.1, are applied to determine which blockchain addresses in a transaction
may belong to the same real-world entity. The clustering algorithms are selected
based on which blockchain the transaction originated from. In the following, the
implementation of transaction-based linking is described in detail.

Account-based Transactions

In a first step, it is important to distinguish between addresses that belong to centralized
exchanges or individuals, since exchanges addresses can either be smart contract
addresses or EOAs [99]. To achieve this, the deposit address reuse heuristic is utilized.

Deposit Address Reuse

Firstly, the algorithm takes as its input a graph where nodes represent addresses and
edges represent transactions between them. The graph is examined to isolate subsets of
exchange addresses and miner addresses, along with the parameter amax, the maximum
difference in Ether amount allowable for two linked transactions to be considered part
of a deposit action. The algorithm begins by iterating through transaction paths that
link two exchange addresses. The path is valid for the heuristic if it starts with an
address that is not identified as an exchange or a miner and ends with an exchange
address. For each path found, the algorithm checks if the transactions involved are
of the same type (either both Ether transactions or both token transfers) and if the
differences in the amount between the received and forwarded transactions fall within
the specified maximums. When a path meets these criteria, the deposit address is
recorded. This address is the intermediary through which Ether or tokens are received
from a user address and forwarded to an exchange address. The algorithm builds a
separate graph for exchange-related activities and another for user activities, adding
the valid paths to the respective graphs. Finally, it refines the user address clusters by
removing any addresses that have already been identified as belonging to exchanges.
The result is two mappings: Me, which associates addresses with exchanges, and Mu,
which associates addresses with individual users.

Chapter 6. Kosmosis Approach 62

Philipp Stangl Master’s Thesis

EVM Address Coexistence

Recall from the use case in chapter 5 that the address 0xc3bc coexists as Ethereum
EOA and Polygon EOA. It is reasonable to assume that Homer_eth owns both EOAs
since a single address is invariably linked to a unique private key across all EVM-
compatible blockchains. To the best of my knowledge, this heuristic is unexplored
in academic studies. It capitalizes on the fact that EVM-compatible blockchains are
designed to be interoperable with Ethereum, meaning they use the same algorithms to
generate addresses. This compatibility is achieved in part through the use of the same
cryptographic algorithms for generating private keys and addresses. In Ethereum
and EVM-compatible blockchains, addresses are derived from the public key, which
in turn is derived from the private key using the ECDSA on the secp256k1 curve
[44]. The process for generating an address involves taking the Keccak-256 hash of
the public key and then using the last 20 bytes of this hash to form the address [44].
Because this process is standardized across EVM-compatible chains, the same private
key will generate the same public key and, consequently, the same address on all these
blockchains. As a result, the control of an address on one chain implicitly confirms
control over the same address on all other EVM-compatible chains, provided the
real-world entity holds the corresponding private key. Wallet software like MetaMask
allows users to switch between different EVM-compatible networks. When a user
switches networks, the same account (i. e., the same set of private and public keys and
thus the same address) is used to interact with the new network. Transactions and
balances, however, are network-specific. For instance, an ETH balance will not carry
over to Polygon, but the address through which a user accesses and manages assets on
Polygon will be the same as on Ethereum, as shown in figure 6.9.

1. interacts with 2. generates

Polygon: 0xc3bc

3. derive addresses

Ethereum: 0xc3bc

Private key/PubkeyMetaMask WalletHomer_eth

Figure 6.9: Illustration of address coexistence on EVM-compatible blockchains

UTXO Transactions

Given a UTXO transaction with transaction inputs I and outputs O, the set of inputs is
I = {(ai, vi, si)|1 ≤ i ≤ n}, where ai is the address unlocking the input, vi is the value
being spent by that input, and si is the script type defining the spending conditions for
that input. The set of outputs is O = {(aj, vj, sj)|1 ≤ j ≤ m}, where aj is the address
locking the output, vj is the value of the output, and sj is the script type specifying
conditions for spending the output.

1. Common-input-ownership

The clustering process commences with the common-input-ownership heuristic that is
based on the idea that all inputs of a UTXO transaction are likely controlled by the

Chapter 6. Kosmosis Approach 63

Philipp Stangl Master’s Thesis

same real-world entity, since the initiator of a transaction must possess the private keys
for all involved input addresses to spend the funds. This heuristic is implemented in
the Kosmosis prototype as follows:

∀(aj, vj), (ak, vk) ∈ I : aj = ak ⇒ RWE(aj) = RWE(ak)

where aj, ak are the addresses that unlock inputs (aj, vj) and (ak, vk); and RWE(aj),
RWE(ak) are the real-world entities controlling addresses aj, ak, respectively.

2. Address Reuse

Using the set of addresses from all previously observed transactions Aprev, the address
reuse heuristic can be applied under the following conditions:

1. The transaction has more than one input address (n > 1).

2. No address is both in the input and output (∀ai ∈ I, ∀aj ∈ O, ai ̸= aj).

3. Exactly one output address is new (∃!ak ∈ O such that ak /∈ Aprev and ak /∈ I).

4. All other output addresses have been observed before (∀aj ∈ O, j ̸= k, aj ∈ Aprev).

5. Equal-Output CoinJoin

CoinJoin is a mechanism used to increase privacy by combining multiple payments
from several users into a single transaction, making it more difficult to determine
who paid whom. The goal of algorithm 2 is to cluster entities associated with outputs
having the same value, assuming these outputs are controlled by different entities
participating in a CoinJoin transaction. A transaction is considered to be a CoinJoin
transaction if there exist at least two outputs in O with equal values (i. e., ∃vj, vk ∈ O
where vj = vk and j ̸= k).

Algorithm 2 Equal-Output CoinJoin
Input: A Bitcoin transaction with a set of outputs O.
Output: Number of real-world entities involved in the CoinJoin transaction.

1: entityCount← 0
2: outputValues← a map of vj to count
3: for each (aj, vj) ∈ O do
4: if vj in outputValues then
5: outputValues[vj]← outputValues[vj] + 1
6: else
7: outputValues[vj]← 1
8: end if
9: end for

10: for each value, count in outputValues do
11: if count ≥ 2 then
12: entityCount← entityCount + count
13: end if
14: end for

Chapter 6. Kosmosis Approach 64

Philipp Stangl Master’s Thesis

2. Script Type

A real-world entity tends to use a consistent script type (e. g., P2SH, P2PKH) for all
inputs within a transaction. If there is an output address whose script type matches
the uniform script type of all input addresses, this output address is likely the change
address. It is especially indicative if this script type is unique or rare among the outputs.
The heuristic for identifying a change address based on script type consistency can be
formalized as follows:

• Consistency Check: Verify that all inputs in I have the same script type. This
is determined by checking if there exists a common script type s∗ for all inputs
(ai, si) ∈ I, si = s∗.

• Change Address Identification: An output address (aj, sj) ∈ O is identified as the
change address if sj matches the common script type s∗ of the inputs, and it is
the only output or one of the few outputs with this script type, given that other
outputs may have different script types.

The heuristic for identifying a change address based on script type consistency is
implemented as follows:

(∀(ai, si), (ak, sk) ∈ I : si = sk = s∗) ∧ (∃!(aj, sj) ∈ O : sj = s∗)⇒ aj is change

3. Round Numbers and Reduced Precision

This heuristic is based on the observation that change addresses often have values with
a greater number of decimal places compared to other outputs in a transaction, due to
the nature of transaction fees and the tendency for users to send amounts with round
numbers to other parties. This heuristic considers the following criteria:

• Search Criterion: Identify any output (ai, vi) ∈ O for which the decimal length
D(vi) > 7. This output is a candidate for being the change address.

• Validation Criterion: Validate the candidate change address by ensuring that for
all other outputs (aj, vj) ∈ O where j ̸= i, the decimal length D(vj) < 2. If this
condition is met, ai is accepted as a change address.

The heuristic for identifying a change address based on round numbers and reduced
precision is implemented as follows:

∃(ai, vi) ∈ O : D(vi) > 7∧ ∀(aj, vj) ∈ O\{(ai, vi)} : D(vj) < 2⇒ ai is change

where D(vi) is the length of decimal places in the value vi of an output. This is a
function that takes a value and returns the number of digits after the decimal point.

What is not considered in this implementation is that the reduced precision number
could be in a different currency (e. g., US dollar). Hence, it would require the exchange
rate at the time the transaction was mined. Further, it may not accurately identify
change addresses in all cases, especially in transactions where users send amounts
with unusual precision or where the change address does not follow the typical pattern
of having a high number of decimal places.

Chapter 6. Kosmosis Approach 65

Philipp Stangl Master’s Thesis

6. Optimal Change

The optimal change heuristic is used to analyze Bitcoin transactions to infer which
inputs and outputs belong to the same real-world entity, assuming that transactions
are optimized to minimize change. This heuristic is based on the observation that
when a transaction includes more inputs than necessary to meet the output amount,
the extra inputs can give insights into the ownership of the inputs.

For the optimal change heuristic, algorithm 3 calculates the total values of inputs
(Vin = ∑n

i=1 vi) and outputs (Vout = ∑m
j=1 vj), then iterates through the outputs to find

the one that, when considered as change, results in the minimal overpayment by the
inputs. This output oc ∈ O is tentatively identified as the change.

Algorithm 3 Optimal Change Heuristic
Input: A Bitcoin transaction T with sets of inputs I and outputs O.
Output: The index of the output likely to be the change, or -1 if undetermined.

1: totalInputValue← 0
2: totalOutputValue← 0
3: changeIndex← −1
4: minimalDifference← ∞
5: for each (ai, vi) ∈ I do
6: totalInputValue← totalInputValue + vi
7: end for
8: for each (aj, vj) ∈ O do
9: totalOutputValue← totalOutputValue + vj

10: end for
11: for each j in 1 . . . m do
12: vj ← O[j].value
13: difference← totalInputValue− (totalOutputValue− vj)
14: if difference ≥ 0 and difference < minimalDifference then
15: minimalDifference← difference
16: changeIndex← j
17: end if
18: end for

6.4.4 RDF Mapping

Initially, the ontology, which defines the conceptual framework for interpreting the
blockchain data, is loaded into an RDFGraph utilizing the RDFLib library. This founda-
tional step ensures that the subsequent mapping aligns with the established semantic
structure, enabling coherent interpretation within the KG. The core of the mapping
process is encapsulated in the dict_to_rdf method. This function is designed to recur-
sively traverse the processed transaction object, systematically converting each element
into RDF triples. This recursive approach is pivotal as it allows for the comprehensive
representation of nested structures inherent in transaction data, thereby preserving the
relational intricacies of the data.

Chapter 6. Kosmosis Approach 66

Philipp Stangl Master’s Thesis

For each key-value pair within the transaction object, the mapping follows a structured
approach. The URI of the main entity (e. g., sender, recipient) serves as the subject
of the triple. To account for the coexistence of blockchain addresses and ensure the
uniqueness of entities, a prefix is attached to distinguish between identical addresses
or transaction hashes that may exist across different blockchains. For example, the
prefixes eth:, btc:, and matic: are utilized to denote Ethereum, Bitcoin, and Polygon
blockchain addresses, respectively. The predicate of the triple is derived from the
ontology, describing the relationship between the subject and the object. The object
data type varies depending on its value:

• If the value is a string literal (e. g., “Mint NFT”), it is represented as a literal with
an appropriate datatype (e. g., xsd:string).

• If the value is another dictionary (e. g., representing a transaction), the function
recursively converts this dictionary into RDF triples, treating it as a sub-entity
within the graph.

• If the value is a list (e. g., inputArgs), the function iterates through the list,
generating separate triples for each element, thereby accommodating multi-
valued properties.

Listing 6.3 showcases the final RDF representation of the processed transaction object
from the previous steps. This representation is subsequently loaded into the KG using
the methods store_entities and store_relations.

<http :// ontology.kosmosis.net#eth:0x0a5 >
rdf:type owl:NamedIndividual ,

:Token_Contract ;
:implements :ERC -721 ;
:address "0x0a5" ;
:tokenName "Ether Reapers" .

<http :// ontology.kosmosis.net#eth:0x819 >
rdf:type owl:NamedIndividual ,

:Call_Transaction ;
:minedOn :Ethereum ;
:minedInBlock "13456446"^^ xsd:unsignedInt ;
:from <http :// ontology.kosmosis.net#eth:0xB24 > ;
:to <http :// ontology.kosmosis.net#eth:0x0a5 > ;
:action "Mint 1 Ether Reapers NFT" ;
:value "80000000000000000"^^ xsd:unsignedInt .

<http :// ontology.kosmosis.net#eth:0xB24 >
rdf:type owl:NamedIndividual ,

:Externally_Owned_Account ;
:hasAccountTag :Ether_Reapers_Minter .

Listing 6.3: The final processing result after entity resolution

Chapter 6. Kosmosis Approach 67

Philipp Stangl Master’s Thesis

6.5 Text-Processing Workflow

The workflow starts with the input of unstructured data from the X Filtered stream
API, which is incrementally streamed and parsed via a long-lived HTTP request into
the pipeline for processing. The filtered stream allows the use of custom rules per
stream. To identify mentions or announcements of new tokens, the following rules
were defined to target keywords and common phrases that are likely to appear in posts
announcing or discussing new tokens (words are placed within quotation marks to
filter for exact matches):

“new token” AND “Ethereum” OR “Polygon”

“new contract” AND “Ethereum” OR “Polygon”

“token” AND “live now”

Since the system must be able to ingest data from possibly multiple EVM-compatible
blockchains that follow the same address patterns, it is important to further distinguish
possibly identified addresses using hashtags, which are likely being used in conjunction
with the aforementioned keywords: #eth OR #ethereum, #matic OR #polygon.

Regular expressions are applied using the blockchain_address_recognition method
on parsing a new post, because the filtered stream does not support them. Table 6.1
lists the regular expressions that are applied to extract the desired type of address.

Address Type Regular Expression

EVM 0x[a-fA-F0-9]{40}
P2PKH [13][a-km-zA-HJ-NP-Z1-9]{25,34}
P2SH 3[a-km-zA-HJ-NP-Z1-9]{25,34}
Bech32 (SegWit) bc1[a-zA-HJ-NP-Z0-9]{25,59} (adopted from Cyble [124])

Table 6.1: Regular expressions for extracting blockchain addresses

Figure 6.10 depicts the classes responsible for extracting knowledge from X posts, or
more generally, text. The first step in processing Text is the removal of superfluous
whitespaces and the expansion of contractions to their full forms, thereby standardizing
the text format for consistent processing. Following this preliminary cleansing, Spacy
is used to generate a tokenized Doc object, representative of the processed text. This
object then undergoes further processing through a sequence of steps, including
tagging, parsing, and entity recognition. The tagger assigns POS tags to each text
token, thereby elucidating the grammatical roles of words within the context of
sentences. Subsequently, the parser assigns dependency labels, which establish the
relationships between tokens, thereby constructing a structured representation of the
sentence. Lastly, NER identifies and classifies named entities present in the text into
predefined categories, such as the names of persons, organizations, and locations.
The next step is relation extraction. This process involves identifying and extracting
relationships between the named entities that were previously recognized. For instance,
it could determine that a person named “Alice” works for a company named “Acme.”

Chapter 6. Kosmosis Approach 68

Philipp Stangl Master’s Thesis

NamedEntityRecognition

+ execute_processing(text)

- named_entity_recognition(text)

- blockchain_address_recognition(text)

- remove_extra_whitespaces(text)

- expand_contractions(text)

RelationExtraction

+ execute_processing(text)

- extract_relations(min_relation_length,
 max_relation_length)

TextEntityResolution

+ execute_processing(text)

- load_rdf_subgraph(knowledge_graph)

- match_relations(extracted_relations)

- match_entities(extracted_entities)

- store_entities(knowledge_graph, entities)

- store_relations(knowledge_graph, relations)

<<Interface>>
ProcessingStep

+ execute_processing(text)

Figure 6.10: UML class diagram for the text-data processing workflow

Furthermore, relextract from the NLTK, facilitates the extraction of relational triples
from the text. These triples, which consist of entities and the relationships between
them, are crucial for the identification and analysis of the underlying semantic networks
within the document, thus providing insights into its content and context. The final
step in the text-processing workflow is entity resolution, achieved through blocking
and matching. For each new entity, the system identifies all other entities within
the KG that must be considered for matching. Due to the growing size of the KG,
through the incremental updates, it is important to limit the matching process to as few
candidates as possible [4]. The method of limiting candidates is known as blocking,
which confines the matching process to entities of the same or most similar entity
type. Following the blocking that serves as a preliminary filtering step, the matching is
performed. This involves a pairwise comparison of the new entities with those existing
entities in the KG identified during the blocking phase. Finally, the result is mapped
to an RDF format at the end, before it is loaded into the KG. Figure 6.11 illustrates the
text-processing procedure from pre-processing to entity resolution for the example
of the Ether Reapers announcement post “Ether Reapers NFT mints today! Contract:
0x0a5.” The “today” value is resolved to “10/20/2021” using the post metadata that
contains the date.

Contract!mints today 0x0a5NFT :Pre-Processing

Named Entity
Recognition

Relation Extraction
&

Entity Resolution

Ether Reapers 0x0a5

Ether Reapers

Contract

addresstokenName

implements

createdAt

Token Account

NFT

0x0a5

10/20/2021

Ether Reapers

ERC-721

10/20/2021

Figure 6.11: Text-processing example of the Ether Reapers announcement post

Chapter 6. Kosmosis Approach 69

Philipp Stangl Master’s Thesis

6.6 Enrichment Data-Processing Workflows

Data enrichment enhances the KG by adding missing attributes or relationships that
may not have been evident or available in the primary data sources. Further, it helps
to correct inaccuracies, thereby improving the overall quality of the data in the KG.
The first workflow focuses on integration of attributions data that is sourced from
community-curated datasets of tagged blockchain addresses to real-world entities
based on their known activities or associations to real-world entities. The second
workflow is for external knowledge bases, aiming to augment the real-world entities
integrated within the KG with detailed descriptions.

6.6.1 Attributions

Attributions involve the mapping of blockchain addresses to their corresponding real-
world entities. Table 6.2 shows an excerpt from the attributions database. This task is
largely dependent on data sourced from a network of experts, such as team members
from blockchain projects. The input data for the attribution process is typically not
consistent in its timing as it depends on when the experts provide updates or when
new information becomes available. As a result, the enrichment data-processing
workflow is designed to operate at regular intervals, ensuring that the KG is updated
systematically and remains as current as possible with the latest available data.

Id Blockchain Blockchain Address Address Label (Tag) Real-World Entity

1 Ethereum 0x503 . . . 23da Hot Wallet 3 Coinbase

2 Ethereum 0xBE0 . . . 3E8 Cold Wallet 7 Binance

3 Ethereum 0x94A . . . daf Coin Mixer Tornado Cash

4 Ethereum 0xA0c. . . C77 Matic Bridge Polygon

Table 6.2: Attribution examples for Ethereum blockchain addresses

6.6.2 External Knowledge Base

To further enrich the KG, data from an external knowledge base is integrated. In this
case, the Golden Knowledge Graph is utilized due to its concentrated information on
tech startups and cryptocurrencies. It offers a significant amount of information about
crypto projects, including details about their founders and project descriptions.

The workflow for integrating knowledge from an external KG is event-driven, activated
once the knowledge storage indicates the addition of new entities from the social media
platform X. Then the workflow triggers a process to pull in additional background
information from the Golden Facts API [23]. It uses the X username of a real-world
entity in the KG as a unique identifier to fetch the enrichment data. Listing 6.4 is an
illustrative response in JSON-LD format for an organization called Coinbase, proving
additional context about the type of real-world entity (organization), the founders,
homepage URL, and a description.

Chapter 6. Kosmosis Approach 70

Philipp Stangl Master’s Thesis

{
"json_ld": {

"@context": "http:// schema.org",
"@type": "Organization",
"name": "Coinbase",
"founder": [

{
"@type": "Person",
"name": "Fred Ehrsam",
"url": "https:// golden.com/wiki/Fred_Ehrsam"

},
{

"@type": "Person",
"name": "Brian Armstrong",
"url": "https:// golden.com/wiki/Brian_Armstrong"

}
],
"legalName": "Coinbase, Inc.",
"url": "https:// coinbase.com",
"text": "Coinbase is a digital asset exchange company ."

}
}

Listing 6.4: Golden KG response for the real-world entity Coinbase

6.7 Summary

This chapter introduced the Kosmosis approach for the incremental construction
of a KG that can be utilized to investigate fraudulent activities with crypto assets.
Kosmosis is a three-stage data pipeline architecture comprising data ingestion, data
processing, and knowledge storage. The data ingestion stage is characterized by its
diverse frequency in data acquisition, which encompasses continuous, incremental,
periodic, and event-based strategies. This variety ensures a timely collection of relevant
data. The data-processing stage is composed of multiple processing workflows tailored
to the specific nature of each data source. These sources include semi-structured
blockchain data, unstructured text data, and structured enrichment data. Enrichment
data plays a pivotal role in this architecture, incorporating attributions for blockchain
addresses and leveraging the Golden KG as an external knowledge base. This external
base sources descriptions for the real-world entities represented within the KG. A
domain-specific ontology was also created to organize and interpret the data within the
KG. This ontology is built around four core concepts: blockchain account, blockchain
transaction, social media account, and real-world entity.

Chapter 6. Kosmosis Approach 71

Philipp Stangl Master’s Thesis

Chapter 7

Evaluation

This chapter provides a technical evaluation of the implemented Kosmosis prototype.
The first section provides a comparison between the KG constructed with Kosmosis and
the transaction graphs presented in chapter 4. Subsequently, section 7.1 discusses the
fitness for use based on the rug pull prevention use case, described in chapter 5. Finally,
section 7.3 discusses current the system limitations of the Kosmosis implementation.

7.1 Fitness for Use

Written in Python and deployed within a Python 3.11 environment on a Linux Ubuntu
OS (22.04), Kosmosis was operated on hardware equipped with a 3.4 GHz Intel i7-
13700K CPU and 32 GB RAM. The pipeline ingested blockchain data from Bitcoin,
Ethereum, and Polygon through Quicknode archive nodes. Posts from the social media
platform X were ingested via the full-archive search endpoint, rather than the filtered
stream endpoint, because historical data was required to evaluate the prototype against
the CQs. The CQs were answered by executing SPARQL queries against the SPARQL
API endpoint of the triplestore where the constructed KG was stored.

Table 7.1 summarizes the results of the CQs, that were defined in section 5.4.1, against
which the final KG was evaluated. The first CQ confirms that the address 0x872d
is indeed associated with the real-world entity Homer_eth. The second question
verifies that the address 0xc8a6 deployed the NFT account Ether Reapers. For the third
question, a list of Ethereum addresses linked to Homer_eth is provided, however, it
is incomplete because 0xf580 is not recognized to belong to Homer_eth. The fourth
question, regarding the linkage of blockchain transactions to social media activity,
remains partially unfulfilled because it is not possible for the system to distinguish
between mentions and announcements. The fifth question confirms the ability to
identify an abnormal pattern of fund diversion related to the Ether Reapers contract.
The sixth confirms that Homer_eth deployed six NFT token accounts on Ethereum.
Lastly, the seventh question confirms that 397 Ethereum addresses minted an Ether
Reapers NFT. Overall, most of the competency questions were fulfilled satisfactorily,
except for one incomplete and one not fulfilled.

72

Philipp Stangl Master’s Thesis

Q
ue

st
io

n
Ex

pe
ct

ed
R

es
po

ns
e

Fu
lfi

lle
d

C
Q

1
D

oe
s

th
e

ad
d

re
ss

0x
87

2d
be

lo
ng

to
th

e
re

al
-w

or
ld

en
ti

ty
H

om
er

_e
th

?
tr

ue
tr

ue
●

C
Q

2
D

id
0x

c8
a6

de
pl

oy
th

e
N

FT
ac

co
un

t
Et

he
r

R
ea

pe
rs

?
tr

ue
tr

ue
●

C
Q

3
W

hi
ch

bl
oc

kc
ha

in
ad

d
re

ss
es

be
lo

ng
to

H
om

er
_e

th
on

th
e

Et
he

re
um

bl
oc

kc
ha

in
?

0x
87

2d
,0

x2
bd

d
,

0x
c3

bc
,

0x
c8

a6
,

0x
e3

96
,0

xf
58

0

0x
c3

bc
,0

x2
bd

d
,

0x
87

2d
,

0x
c8

a6
,

0x
e3

96

◗

C
Q

4
H

ow
ar

e
th

e
bl

oc
kc

ha
in

tr
an

sa
ct

io
ns

of
H

om
er

_e
th

lin
ke

d
to

hi
s

so
ci

al
m

ed
ia

ac
co

un
ts

an
d

po
st

s
on

th
e

so
ci

al
m

ed
ia

pl
at

fo
rm

X
?

an
no

un
ce

s
m

en
ti

on
s

◗

C
Q

5
C

an
th

e
ab

no
rm

al
tr

an
sa

ct
io

n
pa

tt
er

n
of

fu
nd

di
ve

rs
io

n
fr

om
th

e
Et

he
r

R
ea

pe
rs

co
nt

ra
ct

to
it

s
de

pl
oy

er
ad

dr
es

s
be

id
en

ti
fie

d?
ye

s
ye

s
(T

ra
ns

fe
r

of
E

T
H

vi
a

m
in

tR
ea

p
er

fr
om

m
in

te
rs

to
co

nt
ra

ct
to

0x
c8

a6
)

●

C
Q

6
H

ow
m

an
y

N
FT

to
ke

n
ac

co
u

nt
s

d
id

H
om

er
_e

th
d

ep
lo

y
on

Et
he

re
um

?
6

6
●

C
Q

7
H

ow
m

an
y

Et
he

re
um

ad
dr

es
se

s
m

in
te

d
an

Et
he

r
R

ea
pe

rs
N

FT
?

39
7

39
7

●

Ta
bl

e
7.

1:
C

om
pe

te
nc

y
qu

es
ti

on
ev

al
ua

ti
on

re
su

lt
s.

●
-

Fu
lfi

lle
d;

◗
-

Pa
rt

ia
lly

fu
lfi

lle
d

Chapter 7. Evaluation 73

Philipp Stangl Master’s Thesis

7.2 Comparison with Transaction Graphs

Address-transaction graphs illustrate the movement of an asset across transactions
and addresses, providing a fundamental view of transaction flows on the blockchain.
These graphs are essential for tracing asset movement and identifying patterns within
the transactional ecosystem of a blockchain.

User-entity graphs build on address-transaction graphs by clustering them for the
potential linking of addresses controlled by the same user or real-world entity. This
clustering aims to de-anonymize identities and purpose (cf. section 4.2), facilitating a
better understanding of the blockchain usage in practical, real-world contexts.

The money-flow transaction graph, while technically a form of transaction graph, is
not included in this comparison, because the money flow transaction graph primarily
focuses on the financial aspects of transactions. Its primary aim is to visualize the
transfer of value across the network, which, while valuable, offers a narrower scope of
analysis compared with the broad and multifaceted insights provided by KGs.

The KG constructed with Kosmosis exhibits three significant advancements compared
with address-transaction and user-entity graphs (summarized in table 7.2):

1. Integration of On- and Off-Chain Data: Unlike transaction graphs that are
limited to on-chain data, KGs incorporate data from both on-chain and off-chain
sources. This broader data integration offers a more comprehensive view of
entities and their interactions, enriching the analysis with context that extends
beyond the blockchain itself.

2. Extension of User-Entity Representation: KGs not only link addresses belonging
to the same user but also represent users as real-world entities with identifiable
names. Moreover, KGs encompass addresses, transactions, social media profiles,
posts, and possibly descriptions. This extended representation facilitates a deeper
understanding of the users’ roles and activities within and beyond the blockchain
ecosystem.

3. Semantic Data Model: The KG constructed with Kosmosis utilizes the RDF data
model, which semantically describes entities and relations using an ontology.
This semantic foundation enables reasoning and inference over the facts contained
within the KG for downstream tasks.

On-Chain Data Off-Chain Data User-Entity Semantics

Transaction Graph ✓
User Entity Graph ✓ ✓
Knowledge Graph ✓ ✓ ✓ ✓

Table 7.2: Comparison between the constructed knowledge graph and transaction graphs

Chapter 7. Evaluation 74

Philipp Stangl Master’s Thesis

7.3 Limitations

During the development of Kosmosis, the following limitations have emerged. In
the context of address de-anonymization, linking addresses across blockchains that
use different methodologies for generating blockchain addresses is currently not
possible. Specifically, the methodologies for address de-anonymization detailed in the
state-of-the-art chapter, including heuristics proposed by Yousaf et al. [101] for linking
addresses that are owned by the same real-world entity across different blockchains, the
single deposit-withdraw and multi-deposit and multi-withdraw coin mixing heuristics
proposed by Tang et al. [72] for addresses that have interacted with coin mixing services,
and the airdrop multi-participation heuristic by Victor [99] could not be applied for
Kosmosis. The root of these limitations lies in the prerequisite for these methods to have
access to a comprehensive historical dataset blockchain data and for some methods
to be based on temporal transaction patterns. Kosmosis is designed to integrate data
on a per-transaction basis, consequently, facing challenges in adopting these methods.
For instance, transactions to link the addresses may not yet be available at the time
of processing the transaction and are therefore prone to inaccuracies as the linkage is
based on incomplete or delayed transaction information. Moreover, the investigation
into the utility of off-chain data, particularly from social media platforms, has revealed
no significant benefits in circumventing these limitations. This is attributed to the
deliberate use of obfuscation techniques by malicious actors, who avoid disclosing
destination addresses on social media platforms, thereby nullifying the potential for
off-chain data to contribute to deanonymization efforts in these contexts.

The implemented ingestion strategy for text data from the social media platform X

depends on the presence of direct links to blockchain addresses in social media posts.
For instance, the ability to link the user Homer_eth with the Ether Reapers smart contract
(section 5.3) was solely facilitated by the explicit mention of the smart contract address
in Homer_eth’s announcement post on X. This example underscores the limitations
of the current approach, which may overlook relevant connections in the absence of
direct references in social media posts. Therefore, a more sophisticated approach is
required to ensure a broader and still relevant dataset is captured to associate X users
with their respective blockchain addresses. Furthermore, the implemented prototype is
confined to processing text content exclusively in the English language. This linguistic
constraint narrows the scope of data that is ingested and processed with Kosmosis. As
a result, potentially valuable insights from non-English-speaking users on social media
platforms are not captured.

Besides the limitation on the data ingestion end, the text-processing workflow does
not yet cluster matched entities in the entity fusion step. This type of clustering can
enhance the accuracy of entity matching and helps with the subsequent process of
knowledge fusion, where matched entities are fused into a single representative entity
for the KG.

Chapter 7. Evaluation 75

Philipp Stangl Master’s Thesis

7.4 Summary

The evaluation highlights the development and comparison of various graph models
used in blockchain analysis, including address-transaction graphs, user-entity graphs,
and the KG. Address-transaction graphs offer a fundamental view of transaction
flows, while user-entity graphs aim to link addresses controlled by the same entity,
enhancing the understanding of blockchain usage. The KG constructed with Kosmosis,
surpasses these models by integrating on- and off-chain data, extending user entity
representation, and employing a semantic data model for deeper insights. However,
there are limitations in linking blockchain addresses to real-world entities, particularly
across different blockchain methodologies and in incorporating off-chain data from
social media due to obfuscation techniques and linguistic constraints. Additionally,
challenges in entity matching and knowledge fusion processes hinder the effectiveness
of the KG in providing a comprehensive blockchain analysis. Overall, most of the
competency questions were fulfilled satisfactorily, except for one incomplete and one
not fulfilled. The limitations outlined in this chapter highlight areas for future research
and development to enhance.

Chapter 7. Evaluation 76

Philipp Stangl Master’s Thesis

Chapter 8

Future Work

While designing Kosmosis, many points of extensibility were discovered. This chapter
provides an overview of future work motivated by completing the KG development
life cycle in section 8.1, and the rug pull prevention use case in section 8.2.

8.1 Implementational Features

This thesis focused on data acquisition, knowledge extraction and processing as well
as the development of an initial domain-specific ontology. Future work should focus
on completing the KG development life cycle with an implementation for ontology
learning (section 8.1.1) and quality assurance (section 8.1.2).

8.1.1 Ontology Learning

The current design of the prototype exhibits a constrained extensibility for new data
sources due to the static nature of the ontology. While it is possible to add new data
sources to the pipeline, each new addition requires a manual integration process to
align with the ontology that is applied to the KG. To overcome this constraint, the
pipeline should implement methods that assist in evolving the ontology by:

1. Learning from text data: The objective here is to identify key concepts and their
relationships within a collection of text documents. This can be achieved through
linguistic approaches using NLP methods (e. g., syntactic structure analysis)
or machine learning approaches (e. g., utilizing co-occurrence analysis) [125].
Another direction of research are topic-modeling algorithms like Latent Dirichlet
Allocation [126] that can be used to discover topics within the text. This method
can help in grouping documents that discuss similar concepts and discover
emerging topics from social media posts.

2. Learning from blockchain data: Blockchain account tags are statically defined
as concrete instances within the enumerated “Tags” class, providing a structured
method for categorizing blockchain accounts according to their roles or behaviors.

77

Philipp Stangl Master’s Thesis

However, given the dynamic and ever-evolving nature of the blockchain sector,
this static classification system faces significant challenges, specifically with the
emergence of new blockchain functionalities and the evolution of existing ones.
The rigidity of statically defined tags may lead to scenarios where certain account
tags become obsolete or, in a worst-case scenario, the potential to inadequately
describe the role or behavior of a blockchain account, stemming from an absence
of corresponding tags within the ontology.

8.1.2 Quality Assurance

In the realm of crypto asset fraud investigations, the quality of the KG is fundamentally
important for it to be considered as a credible source of information. Quality assurance
encompasses a spectrum of tasks aimed at both evaluating and improving the KG
amid its continuous evolution, including tasks such as quality evaluation, quality
improvement and knowledge completion.

To begin, quality evaluation constitutes the preliminary step for quality assurance. It
involves a systematic assessment of the KG to identify discrepancies, inaccuracies, or
areas that are incomplete. This phase sets the benchmark against which the quality
of the KG can be measured and improved. Upon identifying the quality issues
within the KG, the focus shifts to quality improvement. This step is dedicated to
rectifying the identified problems through the refinement of the KG. Efforts in quality
improvement encompass the addition of missing knowledge and the correction of
erroneous information. Additionally, data-cleaning techniques can play a significant
role in improving the quality of the KG. Identifying outliers or contradictions within
the dataset helps in mitigating errors and inconsistencies. Another avenue for quality
improvement is to validate the semantic correctness and ensure data integrity within
the KG by utilizing solutions such as SHACL or ShEx. These solutions can be used
to enforce data integrity and shape constraints. Finally, KG completion aims to
add missing entries to the KG based on existing triples. This task can range from
determining missing type information and missing relations to missing literals. The
conventional method to identify missing type information relies on logical reasoning.
Recent studies have proposed statistical approaches that leverage the distribution of
relations between entities to predict missing type information. For instance, StaTIX
[127] could be utilized, which relies on weighted statistical data from various attributes
of entities as the basis to predict missing type information. To predict missing relations
between two entities, distant supervision [128] can be used to link entities of the KG to
a text corpus (e. g., social media posts mentioning crypto assets) using NLP approaches
and then try to find patterns in the text between entities.

8.2 Rug Pull Detection and Prevention

The incremental construction of a knowledge graph lays the foundation for a variety
of applications and downstream tasks (many of which are beyond the scope of this
thesis), including the detection of illicit activities, specifically the detection of rug pulls.

Chapter 8. Future Work 78

Philipp Stangl Master’s Thesis

8.2.1 Rug Pull Detection Algorithms

The constructed KG within this thesis serves as a first step toward the identification of
rug pull schemes within the crypto asset sector. However, the generalization, from the
exemplary use case to a sophisticated general rug pull classification method, covering
various data patterns in the KG, is open research. Subsequent endeavors involve
the development of an algorithm capable of discerning rug pull warnings at varying
confidence levels. This pursuit commences with the formulation of an intricate SPARQL
query. Further exploration in this domain could extend beyond the realm of rug pulls,
encompassing a wide array of fraud scenarios prevalent within digital transactions
and cryptocurrency exchanges. The ambition to generalize detection algorithms calls
for the creation of a dedicated library for fraud detection algorithms. Such a library
would encapsulate a variety of methods and models tailored to recognize an extensive
spectrum of illicit activities.

8.2.2 Rug Pull Prevention Methods

Building on the foundation laid by detection algorithms, the next phase of development
focuses on the implementation of proactive measures to prevent engagement with
fraudulent actors. This includes an alerting system for crypto wallets and a browser
extension for the social media platform X.

Alerting System for Crypto Wallets

The conceptualization of an alerting system represents a pivotal advancement in rug
pull prevention. By integrating this system directly with cryptocurrency wallets, users
can be furnished with real-time warnings prior to interacting with potential rug pull
token contracts. The warning notification includes an assessment of the risk level, based
on a risk assessment model that considers various factors such as transaction history,
token contract characteristics, and known associations with fraudulent activities. This
integration not only facilitates an immediate dissemination of critical information
but also empowers users to make informed decisions, thereby safeguarding their
investments against fraudulent schemes.

Browser Extension for the Social Media Platform X

Recognizing the significant role social media plays in the promotion and proliferation of
cryptocurrency projects, specifically on the social media platform X, the development
of a browser extension emerges as another preventive tool. This extension would
display a score indicative of fraudulent crypto behavior adjacent to user profiles,
offering a clear and immediate assessment of the trustworthiness of social media
endorsements. By providing users with a tangible metric to gauge the legitimacy
of cryptocurrency projects and their proponents, this extension aims to significantly
reduce the risk of engagement with fraudulent entities.

Chapter 8. Future Work 79

Philipp Stangl Master’s Thesis

Chapter 9

Conclusion

In the evolving crypto assets sector, fraud detection and prevention remain significant
challenges. Knowledge graphs offer a solution by integrating data from diverse
sources to identify patterns and hidden connections indicative of fraud, overcoming
the limitations of traditional blockchain transaction analysis.

This thesis proposes Kosmosis, an incremental knowledge graph construction pipeline,
which updates the knowledge graph with new data from the blockchain (on-chain)
and social media (off-chain) without rebuilding the entire knowledge graph. This
thesis enhances fraud detection for crypto asset fraud investigations by leveraging
knowledge graphs for a more comprehensive analysis, addressing the challenges
traditional methods face in linking blockchain addresses to real-world entities and
understanding the context of transactions. The research conducted for the Kosmosis
prototype was structured around three objectives:

O1: How to incrementally construct a knowledge graph from on-chain data and
off-chain data?
The primary objective was to devise a solution to construct a knowledge graph as
new on-chain and off-chain data becomes available. This was achieved through
the design and implementation of a software prototype. The pipeline has the
following three stages:
(1) Data ingestion, a stage where raw data from various sources is collected and
prepared for further processing. The frequency of data acquisition can be (i)
continuous to capture real-time updates from sources such as blockchain nodes,
(ii) incremental for new posts via the X Filtered stream API, (iii) periodic to
capture new entries in structured data sources like relational databases at regular
intervals, or (iv) event-based, responding to events that are emitted upon new
entity additions to the knowledge graph; (2) Data processing, a stage where
relevant knowledge from the pre-processed data is identified, extracted, and
finally fused with the existing knowledge graph. It is partitioned into distinct
data-processing workflows tailored to handle each type of ingested data; (3)
Knowledge storage is the final stage where new knowledge gets loaded into the
knowledge graph, which persists in a triplestore.

80

Philipp Stangl Master’s Thesis

O2: How to extract the semantics contained within blockchain transactions?
The extraction of semantics in blockchain transactions provides additional context
for understanding crypto asset flows, specifically for smart contract platforms
such as Ethereum. Transactions on smart contract platforms can be broadly
categorized into: value transactions, which solely transfer the native blockchain
currency (e. g., Ether); contract creation transactions, wherein a new smart contract
or token contract is deployed onto the blockchain by an externally owned account;
and call transactions, which trigger the execution of a smart contract, including
actions like minting or swapping tokens on a blockchain.

To achieve the extraction of the semantics in blockchain transactions, the ABI of
smart contracts was utilized. However, this task presented a significant challenge
due to the public availability of the bytecode of a smart contract, contrasted with
the inaccessibility of its ABI. Therefore, the system attempts to fetch the ABI
from web sources such as blockchain explorers at first. If this does not yield
a result, the available bytecode is used to reconstruct the ABI. This enables to
extract the semantics even if the ABI is not available elsewhere. It is important to
note that this approach is specific to smart contract platforms and does not apply
to UTXO-based blockchains, like Bitcoin, where transactions are seen as transfer
transactions without the layered complexity of smart contract platforms.

O3: How to automatically link blockchain addresses to their real-world entities
during knowledge graph construction?
Automatically mapping blockchain addresses to real-world entities is a critical
process in the investigation of crypto asset fraud. This step is paramount because
it allows investigators to peel back the layers of anonymity inherent in blockchain
technology, providing a clearer view of the individuals or organizations behind
suspicious activities. By utilizing a combination of off-chain information sources,
such as social media profiles, attributions from community-curated address
labels, and external knowledge bases, alongside clustering heuristics, this process
can effectively link blockchain transactions to their real-world counterparts. The
clustering heuristics employed include common-input-ownership, which assumes
control over multiple addresses if they are inputs to the same transaction; address
reuse, where repeated use of the same address suggests ownership; equal-output
CoinJoin, identifying transactions intended to obfuscate ownership; script type,
which classifies addresses based on their script patterns; and optimal change to
distinguish the change addresses in transactions of UTXO-based blockchains. For
account-based blockchains, deposit address reuse was found to be an important
heuristic for identifying addresses that belong to centralized exchanges. For
EVM-compatible blockchains (a subset of account-based blockchains), the EVM
address coexistence heuristic was described to link coexisting EVM addresses to a
real-world entity.

Kosmosis becomes the basis for semantic querying and reasoning over the constructed
knowledge graph, facilitating analyses for cybercrime and fraud prevention, with the
current focus on rug pulls as a major fraud scheme. The feasibility of the software
prototype has been demonstrated by the use case of rug pull prevention, for which

Chapter 9. Conclusion 81

Philipp Stangl Master’s Thesis

competency questions were derived from a user story based on a real rug pull series
from 2021. The constructed knowledge graph can serve as a knowledge base for
various other downstream tasks such as transaction pattern recognition to track and
observe transactions from specific users, or the detection of illicit activities on the
blockchain network such as money laundering.

Chapter 9. Conclusion 82

Philipp Stangl Master’s Thesis

Appendix A

Supplementary Material

{
"jsonrpc": "2.0",
"method": "eth_subscription",
"params": {

"result": {
"transaction": {

"blockHash": "0x6a5 ...636",
"blockNumber": 14304371,
"from": "0x1a8 ... D66",
"gas": 5413447,
"gasPrice": 56772873536,
"maxFeePerGas": 63527685620,
"maxPriorityFeePerGas": 1500000000,
"hash": "0x2bb ...4d8",
"input": "0 x60e06040 ...", → Has input data
"nonce": 2,
"to": null, → No receiver address
"transactionIndex": 102,
"value": 0,
"type": 2,
"accessList": [],
"chainId": 1,
"v": 0,
"r": "0xac9 ...0ab",
"s": "0x75d ...872",

}
}

}
}

Listing A.1: Contract creation transaction on the Ethereum blockchain

83

Philipp Stangl Master’s Thesis

{
"jsonrpc": "2.0",
"method": "get_transaction_receipt",
"params": {

"result": {
"receipt": {

"blockHash": "0x6a5 ...636",
"blockNumber": 14304371,
"contractAddress": "0x439 ...094", → New contract
"cumulativeGasUsed": 12057812,
"effectiveGasPrice": 56772873536,
"from": "0x1a8 ... D66",
"gasUsed": 5413447,
"logs": [

{
"address": "0x439 ...094",
"topics": [...],

}
],
"logsBloom": "0 x0000 ..."
"status": 1,
"to": null,
"transactionHash": "0x2bb ...4d8",
"transactionIndex": 102,
"type": 2

}
}

}
}

Listing A.2: Transaction receipt for the contract creation transaction

Chapter A. Supplementary Material 84

Philipp Stangl Master’s Thesis

{
"txid": "6d4...a2c",
"size": 224,
"version": 1,
"locktime": 0,
"fee": 16950,
"inputs": [

{
"coinbase": false,
"txid": "c69 ...65f",
"output": 0,
"sigscript": "483... db8",
"sequence": 4294967295,
"pkscript": "76a...88 ac",
"value": 29885600,
"address": "1 HZxxLkrATEcDBmdXqNLxxUXUhCSy97E2T",
"witness": []

}
],
"outputs": [

{
"address": "3 BuQAXATUC64PGFpFbGebzxz5DyspQT1d0",
"pkscript": "a91 ...687",
"value": 287700,
"spent": false,
"spender": null,

},
{

"address": "1 HZxxLkrATEcDBmdXqNLxxUXUhCSy97E2T",
"pkscript": "76a...8ac",
"value": 29580950,
"spent": true,
"spender": {

"txid" : "C7ad2c1a041f ... f2a5" ,
"input": 0

}
}

]
}

Listing A.3: UTXO transaction with one input and two outputs

Chapter A. Supplementary Material 85

Philipp Stangl Master’s Thesis

Bibliography

[1] K. Grauer, E. Jardine, E. Leosz, and H. Updegrave, “The 2023 Crypto Crime
Report,” Chainalysis, Annual Report, 2023.

[2] X. Zhu, X. Ao, Z. Qin, et al., “Intelligent financial fraud detection practices in
post-pandemic era,” The Innovation, vol. 2, no. 4, p. 100 176, Nov. 2021, issn:
26666758. doi: 10.1016/j.xinn.2021.100176.

[3] C. Feilmayr and W. Wöß, “An Analysis of Ontologies and their Success Factors
for Application to Business,” Data & Knowledge Engineering, vol. 101, pp. 1–23,
2016, issn: 0169-023X. doi: 10.1016/j.datak.2015.11.003.

[4] M. Hofer, D. Obraczka, A. Saeedi, H. Köpcke, and E. Rahm. “Construction of
Knowledge Graphs: State and Challenges.” arXiv: 2302.11509 [cs.AI]. (Oct. 11,
2023).

[5] A. Khan, “Graph Analysis of the Ethereum Blockchain Data: A Survey of
Datasets, Methods, and Future Work,” in 2022 IEEE International Conference
on Blockchain (Blockchain), Espoo, Finland: IEEE, Aug. 2022, pp. 250–257, isbn:
978-1-66546-104-7. doi: 10.1109/Blockchain55522.2022.00042.

[6] F. Béres, I. A. Seres, A. A. Benczúr, and M. Quintyne-Collins, “Blockchain is
Watching You: Profiling and Deanonymizing Ethereum Users,” in 2021 IEEE
International Conference on Decentralized Applications and Infrastructures (DAPPS),
IEEE, 2021, pp. 69–78.

[7] H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo, “A Survey of State-of-the-
Art on Blockchains: Theories, Modelings, and Tools,” ACM Computing Surveys,
vol. 54, no. 2, pp. 1–42, Mar. 12, 2021, issn: 0360-0300. doi: 10.1145/3441692.

[8] M. Fleder, M. S. Kester, and S. Pillai. “Bitcoin Transaction Graph Analysis.”
arXiv: 1502.01657 [cs.CR]. (Feb. 5, 2015).

[9] A. R. Hevner, “A Three Cycle View of Design Science Research,” Scandinavian
journal of information systems, vol. 19, no. 2, p. 4, 2007.

[10] C. Bezerra, F. Freitas, and F. Santana da Silva, Evaluating Ontologies with Com-
petency Questions. Nov. 1, 2013, p. 285, 284 pp., isbn: 978-1-4799-2902-3. doi:
10.1109/WI-IAT.2013.199.

[11] Y. Ren, A. Parvizi, C. Mellish, J. Z. Pan, K. Van Deemter, and R. Stevens,
“Towards Competency Question-Driven Ontology Authoring,” in The Semantic
Web: Trends and Challenges, V. Presutti, C. d’Amato, F. Gandon, M. d’Aquin,
S. Staab, and A. Tordai, Eds., red. by D. Hutchison, T. Kanade, J. Kittler, et al.,
vol. 8465, Cham: Springer International Publishing, 2014, pp. 752–767, isbn:
978-3-319-07443-6. doi: 10.1007/978-3-319-07443-6_50.

86

https://doi.org/10.1016/j.xinn.2021.100176
https://doi.org/10.1016/j.datak.2015.11.003
https://arxiv.org/abs/2302.11509
https://doi.org/10.1109/Blockchain55522.2022.00042
https://doi.org/10.1145/3441692
https://arxiv.org/abs/1502.01657
https://doi.org/10.1109/WI-IAT.2013.199
https://doi.org/10.1007/978-3-319-07443-6_50

Philipp Stangl Master’s Thesis

[12] Stanford University. “Protégé.” (2023), [Online]. Available: https://protege.
stanford.edu/ (visited on 12/03/2023).

[13] N. Noy and D. Mcguinness, “Ontology Development 101: A Guide to Creating
Your First Ontology,” Knowledge Systems Laboratory, vol. 32, Jan. 1, 2001.

[14] D. Krech et al. “RDFLib.” (2002), [Online]. Available: https://github.com/
RDFLib/rdflib (visited on 12/12/2023).

[15] X. Schmitt, S. Kubler, J. Robert, M. Papadakis, and Y. LeTraon, A Replicable
Comparison Study of NER Software: StanfordNLP, NLTK, OpenNLP, SpaCy, Gate.
Oct. 1, 2019, p. 343, 338 pp. doi: 10.1109/SNAMS.2019.8931850.

[16] S. Bird, “NLTK: The Natural Language Toolkit,” in Proceedings of the COL-
ING/ACL 2006 Interactive Presentation Sessions, J. Curran, Ed., Sydney, Aus-
tralia: Association for Computational Linguistics, Jul. 2006, pp. 69–72. doi:
10.3115/1225403.1225421.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software. Pearson International, Oct. 31, 1994, isbn:
978-0-321-70074-2.

[18] B. Okken, Python Testing with Pytest. Pragmatic Bookshelf, 2022.
[19] QuickNode. “QuickNode - Blockchain Infrastructure Powering Secure, Decen-

tralized Innovation.” (2024), [Online]. Available: https://www.quicknode.com/
(visited on 01/28/2024).

[20] X Corp. “Filtered stream introduction,” Twitter API Documentation. (2024),
[Online]. Available: https://developer.twitter.com/en/docs/twitter-
api/tweets/filtered-stream/introduction (visited on 02/06/2024).

[21] Etherscan. “Etherscan: The Ethereum Blockchain Explorer.” (2023), [Online].
Available: https://etherscan.io/ (visited on 12/07/2023).

[22] R. O. Obe and L. S. Hsu, PostgreSQL: Up and Running, A Practical Guide to the
Advanced Open Source Database, 3rd ed. O’Reilly Media, Inc., Oct. 2017, isbn:
978-1-4919-6336-4.

[23] Golden. “Golden Facts API - Keep Your Data Fresh.” (2024), [Online]. Available:
https://golden.com/product/api (visited on 02/06/2024).

[24] PolygonScan. “Polygon PoS Chain (MATIC) Blockchain Explorer,” Polygon
(MATIC) Blockchain Explorer. (2023), [Online]. Available: http://polygonscan.
com/ (visited on 12/02/2023).

[25] J. Lehmann, R. Isele, M. Jakob, et al., “DBpedia - A Large-scale, Multilingual
Knowledge Base Extracted from Wikipedia,” Semantic Web Journal, vol. 6, Jan. 1,
2014. doi: 10.3233/SW-140134.

[26] A. Singhal. “Introducing the Knowledge Graph: Things, Not Strings,” Google.
(May 16, 2012), [Online]. Available: https://blog.google/products/search/
introducing-knowledge-graph-things-not/ (visited on 12/15/2023).

[27] B. Abu-Salih, “Domain-specific knowledge graphs: A survey,” Journal of Network
and Computer Applications, vol. 185, p. 103 076, Jul. 2021, issn: 10848045.

[28] M. Bergman. “A Common Sense View of Knowledge Graphs,” AI3:::Adaptive
Information. (Jul. 1, 2019), [Online]. Available: https://www.mkbergman.com/
2244/a-common-sense-view-of-knowledge-graphs/ (visited on 12/15/2023).

BIBLIOGRAPHY 87

https://protege.stanford.edu/
https://protege.stanford.edu/
https://github.com/RDFLib/rdflib
https://github.com/RDFLib/rdflib
https://doi.org/10.1109/SNAMS.2019.8931850
https://doi.org/10.3115/1225403.1225421
https://www.quicknode.com/
https://developer.twitter.com/en/docs/twitter-api/tweets/filtered-stream/introduction
https://developer.twitter.com/en/docs/twitter-api/tweets/filtered-stream/introduction
https://etherscan.io/
https://golden.com/product/api
http://polygonscan.com/
http://polygonscan.com/
https://doi.org/10.3233/SW-140134
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.mkbergman.com/2244/a-common-sense-view-of-knowledge-graphs/
https://www.mkbergman.com/2244/a-common-sense-view-of-knowledge-graphs/

Philipp Stangl Master’s Thesis

[29] P. A. Bonatti, S. Decker, A. Polleres, and V. Presutti, “Knowledge Graphs:
New Directions for Knowledge Representation on the Semantic Web,” Dagstuhl
Reports, vol. 8, no. 9, P. A. Bonatti, S. Decker, A. Polleres, and V. Presutti, Eds.,
pp. 29–111, 2019, issn: 2192-5283. doi: 10.4230/DagRep.8.9.29.

[30] L. Ehrlinger and W. Wöß, “Towards a Definition of Knowledge Graphs,” SE-
MANTiCS (Posters, Demos, SuCCESS), vol. 48, no. 1-4, p. 2, 2016.

[31] A. Hogan, E. Blomqvist, M. Cochez, et al., “Knowledge Graphs,” ACM Comput-
ing Surveys, vol. 54, no. 4, pp. 1–37, Jul. 2, 2021, issn: 0360-0300. doi: 10.1145/
3447772.

[32] M. Lal, Neo4j Graph Data Modeling. Packt, Jul. 2015, isbn: 978-1-78439-344-1.
[33] L. Ora, “Resource Description Framework (RDF) Model and Syntax Specifica-

tion,” http://www. w3. org/TR/REC-rdf-syntax/, 1999.
[34] N. Francis, A. Green, P. Guagliardo, et al., “Cypher: An Evolving Query Lan-

guage for Property Graphs,” in SIGMOD’18 Proceedings of the 2018 International
Conference on Management of Data, ser. SIGMOD ’18, Houston, TX, USA: Associa-
tion for Computing Machinery, 2018, p. 1433. doi: 10.1145/3183713.3190657.

[35] J. Pokornỳ, “Graph Databases: Their Power and Limitations,” in Computer
Information Systems and Industrial Management, K. Saeed and W. Homenda,
Eds., vol. 9339, Cham: Springer International Publishing, 2015, pp. 58–69, isbn:
978-3-319-24369-6. doi: 10.1007/978-3-319-24369-6_5.

[36] D. Alocci, J. Mariethoz, O. Horlacher, J. T. Bolleman, M. P. Campbell, and
F. Lisacek, “Property Graph vs RDF Triple Store: A Comparison on Glycan
Substructure Search,” PLOS ONE, vol. 10, no. 12, Dec. 14, 2015, issn: 1932-6203.
doi: 10.1371/journal.pone.0144578. pmid: 26656740.

[37] M. Färber, F. Bartscherer, C. Menne, and A. Rettinger, “Linked Data Quality of
Dbpedia, Freebase, Opencyc, Wikidata, and Yago,” Semantic Web, vol. 9, no. 1,
pp. 77–129, 2018.

[38] T. R. Gruber, “A translation approach to portable ontology specifications,”
Knowledge acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[39] M. Arenas and J. Pérez, “Querying Semantic Web Data with SPARQL,” in
Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, Athens Greece: Association for Computing Machinery,
Jun. 13, 2011, pp. 305–316, isbn: 978-1-4503-0660-7. doi: 10.1145/1989284.
1989312.

[40] H. Knublauch and D. Kontokostas, “Shapes Constraint Language (SHACL),”
W3C Candidate Recommendation, vol. 11, no. 8, p. 1, 2017.

[41] E. Prud’hommeaux, J. E. Labra Gayo, and H. Solbrig, “Shape Expressions:
An RDF validation and transformation language,” in Proceedings of the 10th
International Conference on Semantic Systems, 2014, pp. 32–40.

[42] J. E. L. Gayo, E. Prud’Hommeaux, I. Boneva, and D. Kontokostas, Validating
RDF Data. Morgan & Claypool Publishers, 2017. [Online]. Available: https:
//book.validatingrdf.com/ (visited on 12/16/2023).

[43] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Bitcoin.org,
White Paper, 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf
(visited on 12/03/2023).

BIBLIOGRAPHY 88

https://doi.org/10.4230/DagRep.8.9.29
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1007/978-3-319-24369-6_5
https://doi.org/10.1371/journal.pone.0144578
26656740
https://doi.org/10.1145/1989284.1989312
https://doi.org/10.1145/1989284.1989312
https://book.validatingrdf.com/
https://book.validatingrdf.com/
https://bitcoin.org/bitcoin.pdf

Philipp Stangl Master’s Thesis

[44] G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction Ledger,”
Ethereum Foundation, Yellow Paper c74b55f, 2024. [Online]. Available: https:
//ethereum.github.io/yellowpaper/paper.pdf (visited on 01/29/2024).

[45] A. Yakovenko, “Solana: A new architecture for a high performance blockchain
v0.8.13,” Solana Labs, White Paper, 2018. [Online]. Available: https://coincod
e-live.github.io/static/whitepaper/source001/10608577.pdf (visited on
11/29/2023).

[46] L. Breidenbach, C. Cachin, A. Coventry, et al., “Chainlink 2.0: Next Steps in the
Evolution of Decentralized Oracle Networks,” Chainlink Labs, White Paper,
2021. [Online]. Available: https://research.chain.link/whitepaper-v2.pdf
(visited on 01/29/2024).

[47] B. Mizrach. “Stablecoins: Survivorship, Transactions Costs and Exchange Mi-
crostructure.” arXiv: 2201.01392 [q-fin.TR]. (Feb. 26, 2023).

[48] M. Hall and J. Watkinson. “CryptoPunks.” (2017), [Online]. Available: https:
//cryptopunks.app/ (visited on 11/19/2023).

[49] S. Alizadeh, A. Setayesh, A. Mohamadpour, and B. Bahrak, “A Network Analy-
sis of the Non-Fungible Token (NFT) Market: Structural Characteristics, Evolu-
tion, and Interactions,” Applied Network Science, vol. 8, no. 1, p. 38, 2023.

[50] Coinbase Inc. “Coinbase - Buy and Sell Bitcoin, Ethereum, and More with
Trust.” (2024), [Online]. Available: https://www.coinbase.com/ (visited on
01/19/2024).

[51] H. Adams, N. Zinsmeister, M. Salem, R. Keefer, and D. Robinson, “Uniswap
v3 Core,” Uniswap Labs, White Paper, Mar. 2021. [Online]. Available: https:
//uniswap.org/whitepaper-v3.pdf (visited on 12/19/2023).

[52] B. White, A. Mahanti, and K. Passi, “Characterizing the OpenSea NFT mar-
ketplace,” in Companion Proceedings of the Web Conference 2022, 2022, pp. 488–
496.

[53] K. Grauer and E. Jardine, “Cryptocurrencies and Drugs: Analysis of Cryptocur-
rency Use on Darknet Markets in the EU and Neighbouring Countries,” The
European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), 2022.

[54] M. Bartoletti, S. Lande, A. Loddo, L. Pompianu, and S. Serusi, “Cryptocurrency
Scams: Analysis and Perspectives,” IEEE Access, vol. 9, pp. 148 353–148 373,
2021, issn: 2169-3536. doi: 10.1109/ACCESS.2021.3123894.

[55] B. Mazorra, V. Adan, and V. Daza. “Do Not Rug on Me: Zero-dimensional Scam
Detection.” arXiv: 2201.07220 [cs.CR]. (Jan. 16, 2022).

[56] T. Sharma, R. Agarwal, and S. K. Shukla, “Understanding Rug Pulls: An In-
depth Behavioral Analysis of Fraudulent NFT Creators,” ACM Transactions on
the Web, vol. 18, no. 1, pp. 1–39, Feb. 29, 2024, issn: 1559-1131. doi: 10.1145/
3623376.

[57] M. H. Nguyen, P. D. Huynh, S. H. Dau, and X. Li, “Rug-pull malicious token
detection on blockchain using supervised learning with feature engineering,” in
2023 Australasian Computer Science Week, Melbourne, VIC, Australia: Association
for Computing Machinery, Jan. 30, 2023, pp. 72–81. doi: 10.1145/3579375.
3579385.

BIBLIOGRAPHY 89

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://coincode-live.github.io/static/whitepaper/source001/10608577.pdf
https://coincode-live.github.io/static/whitepaper/source001/10608577.pdf
https://research.chain.link/whitepaper-v2.pdf
https://arxiv.org/abs/2201.01392
https://cryptopunks.app/
https://cryptopunks.app/
https://www.coinbase.com/
https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-v3.pdf
https://doi.org/10.1109/ACCESS.2021.3123894
https://arxiv.org/abs/2201.07220
https://doi.org/10.1145/3623376
https://doi.org/10.1145/3623376
https://doi.org/10.1145/3579375.3579385
https://doi.org/10.1145/3579375.3579385

Philipp Stangl Master’s Thesis

[58] F. Cernera, M. La Morgia, A. Mei, and F. Sassi, “Token Spammers, Rug Pulls,
and Sniper Bots: An Analysis of the Ecosystem of Tokens in Ethereum and in
the Binance Smart Chain (BNB),” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 3349–3366.

[59] S. Wang, D. Li, Y. Zhang, and J. Chen, “Smart Contract-Based Product Trace-
ability System in the Supply Chain Scenario,” IEEE Access, vol. 7, pp. 115 122–
115 133, 2019. doi: 10.1109/ACCESS.2019.2935873.

[60] P. Stangl, “Design and Implementation of a Heterogeneous Blockchain Con-
sortium for a Food Supply Chain Network,” Bachelor’s Thesis, Ostbayerische
Technische Hochschule Amberg-Weiden, Jan. 2022. [Online]. Available: https:
//www.cyberlytics.eu/theses/all/OTH- AW/BT_2022_Stangl_Philipp_
Thesis/BT_2022_Stangl_Philipp_Thesis.pdf.

[61] P. Stangl and C. P. Neumann, “FoodFresh: Multi-Chain Design for an Inter-
Institutional Food Supply Chain Network,” in IARIA Cloud Computing 2023:
14th International Conference on Cloud Computing, GRIDs, and Virtualization, Nice,
France, Jun. 2023, pp. 41–46.

[62] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of Blockchain
Technology: Architecture, Consensus, and Future Trends,” in 2017 IEEE Interna-
tional Congress on Big Data (BigData Congress), Honolulu, HI, USA: IEEE, Jun.
2017, pp. 557–564, isbn: 978-1-5386-1996-4. doi: 10.1109/BigDataCongress.
2017.85.

[63] A. M. Antonopoulos and D. A. Harding, “Keys, Addresses, Wallets,” in Master-
ing Bitcoin: Programming the Open Blockchain, M. Smith, A. Rufino, C. Laylock,
and K. Cofer, Eds., 3rd ed. O’Reilly Media, Inc., Nov. 30, 2023, ch. 4, isbn:
978-1-09-815009-9.

[64] B. Werkheiser. “Archive Nodes - Everything You Need to Know,” Alchemy.
(Jun. 21, 2022), [Online]. Available: https://www.alchemy.com/overviews/
archive-nodes (visited on 02/19/2024).

[65] O. Marin, T. Cioara, L. Toderean, D. Mitrea, and I. Anghel, “Review of Blockchain
Tokens Creation and Valuation,” Future Internet, vol. 15, no. 12, p. 382, Nov. 27,
2023, issn: 1999-5903. doi: 10.3390/fi15120382.

[66] F. Vogelsteller and V. Buterin. “ERC-20: Token Standard,” Ethereum Foundation.
(Nov. 19, 2015), [Online]. Available: https://eips.ethereum.org/EIPS/eip-20
(visited on 12/16/2023).

[67] W. Entriken, D. Shirley, J. Evans, and N. Sachs. “ERC-721: Non-Fungible Token
Standard,” Ethereum Foundation. (Jan. 24, 2018), [Online]. Available: https:
//eips.ethereum.org/EIPS/eip-721 (visited on 12/16/2023).

[68] E. Takeuchi. “Explaining Ethereum Contract ABI & EVM Bytecode.” (Jul. 16,
2019), [Online]. Available: https://medium.com/@eiki1212/explaining-ether
eum-contract-abi-evm-bytecode-6afa6e917c3b (visited on 12/07/2023).

[69] R. Zhang, R. Xue, and L. Liu, “Security and Privacy on Blockchain,” ACM
Computing Surveys, vol. 52, no. 3, pp. 1–34, May 31, 2020, issn: 0360-0300. doi:
10.1145/3316481.

BIBLIOGRAPHY 90

https://doi.org/10.1109/ACCESS.2019.2935873
https://www.cyberlytics.eu/theses/all/OTH-AW/BT_2022_Stangl_Philipp_Thesis/BT_2022_Stangl_Philipp_Thesis.pdf
https://www.cyberlytics.eu/theses/all/OTH-AW/BT_2022_Stangl_Philipp_Thesis/BT_2022_Stangl_Philipp_Thesis.pdf
https://www.cyberlytics.eu/theses/all/OTH-AW/BT_2022_Stangl_Philipp_Thesis/BT_2022_Stangl_Philipp_Thesis.pdf
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1109/BigDataCongress.2017.85
https://www.alchemy.com/overviews/archive-nodes
https://www.alchemy.com/overviews/archive-nodes
https://doi.org/10.3390/fi15120382
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://medium.com/@eiki1212/explaining-ethereum-contract-abi-evm-bytecode-6afa6e917c3b
https://medium.com/@eiki1212/explaining-ethereum-contract-abi-evm-bytecode-6afa6e917c3b
https://doi.org/10.1145/3316481

Philipp Stangl Master’s Thesis

[70] S. Meiklejohn, M. Pomarole, G. Jordan, et al., “A Fistful of Bitcoins: Charac-
terizing Payments Among Men with No Names,” Communications of the ACM,
vol. 59, no. 4, pp. 86–93, Mar. 2016, issn: 0001-0782. doi: 10.1145/2896384.

[71] A. Narayanan and M. Möser. “Obfuscation in Bitcoin: Techniques and Politics.”
arXiv: 1706.05432 [cs.CY]. (Jun. 29, 2017).

[72] Y. Tang, C. Xu, C. Zhang, Y. Wu, and L. Zhu, “Analysis of Address Linkability
in Tornado Cash on Ethereum,” in Cyber Security, W. Lu, Y. Zhang, W. Wen,
H. Yan, and C. Li, Eds., Springer Nature Singapore, 2022, pp. 39–50, isbn:
978-981-16-9229-1.

[73] T. Chen, H. Lu, T. Kunpittaya, and A. Luo. “A Review of zk-SNARKs.” arXiv:
2202.06877 [cs.CR]. (Oct. 25, 2023).

[74] G. Maxwell. “CoinJoin: Bitcoin Privacy for the Real World.” (2013), [Online].
Available: https://bitcointalk.org/index.php?topic=279249.0 (visited on
01/14/2024).

[75] D. Chaum, “Blind Signatures for Untraceable Payments,” in Advances in Cryp-
tology: Proceedings of CRYPTO ’82, Santa Barbara, CA, USA: Springer, 1998,
pp. 199–203.

[76] Á. Ficsór, I. A. Seres, Y. Kogman, and L. Ontivero, “Wabisabi: Centrally Coordi-
nated CoinJoins with Variable Amounts,” Cryptology ePrint Archive, 2021.

[77] K. Kaupe et al. “JoinMarket.” (2017), [Online]. Available: https://github.com/
JoinMarket-Org/joinmarket-clientserver (visited on 12/07/2023).

[78] Á. Ficsór et al. “ZeroLink.” (2017), [Online]. Available: https://github.com/
nopara73/ZeroLink (visited on 12/11/2023).

[79] Samourai Open Source Development Team. “Samourai Whirlpool.” (2017), [On-
line]. Available: https://code.samourai.io/whirlpool (visited on 12/11/2023).

[80] M. Möser and R. Böhme, “Anonymous Alone? Measuring Bitcoin’s Second-
Generation Anonymization Techniques,” in 2017 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), Paris: IEEE, Apr. 2017, pp. 32–41,
isbn: 978-1-5386-2244-5. doi: 10.1109/EuroSPW.2017.48.

[81] G. Tamašauskaitė and P. Groth, “Defining a Knowledge Graph Development
Process Through a Systematic Review,” ACM Transactions on Software Engineering
and Methodology, vol. 32, no. 1, pp. 1–40, Jan. 31, 2023, issn: 1049-331X. doi:
10.1145/3522586.

[82] Z. Nasar, S. W. Jaffry, and M. K. Malik, “Named Entity Recognition and Relation
Extraction: State-of-the-Art,” ACM Computing Surveys (CSUR), vol. 54, no. 1,
pp. 1–39, Feb. 2021.

[83] D. Nadeau and S. Sekine, “A Survey of Named Entity Recognition and Classifi-
cation,” Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26, 2007.

[84] J. Li, A. Sun, J. Han, and C. Li, “A Survey on Deep Learning for Named Entity
Recognition,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 1,
pp. 50–70, 2020.

[85] N. Nakashole, T. Tylenda, and G. Weikum, “Fine-Grained Semantic Typing of
Emerging Entities,” in Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2013, pp. 1488–1497.

BIBLIOGRAPHY 91

https://doi.org/10.1145/2896384
https://arxiv.org/abs/1706.05432
https://arxiv.org/abs/2202.06877
https://bitcointalk.org/index.php?topic=279249.0
https://github.com/JoinMarket-Org/joinmarket-clientserver
https://github.com/JoinMarket-Org/joinmarket-clientserver
https://github.com/nopara73/ZeroLink
https://github.com/nopara73/ZeroLink
https://code.samourai.io/whirlpool
https://doi.org/10.1109/EuroSPW.2017.48
https://doi.org/10.1145/3522586

Philipp Stangl Master’s Thesis

[86] L. Chiticariu, M. Danilevsky, Y. Li, F. Reiss, and H. Zhu, “SystemT: Declarative
Text Understanding for Enterprise,” in Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 3 (Industry Papers), 2018, pp. 76–83.

[87] M. Atzmueller, P. Kluegl, and F. Puppe, “Rule-Based Information Extraction for
Structured Data Acquisition using TextMarker,” in LWA, vol. 8, 2008.

[88] A. Toral and R. Muñoz, “A Proposal to Automatically Build and Maintain
Gazetteers for Named Entity Recognition by Using Wikipedia,” in Proceedings
of the Workshop on NEW TEXT Wikis and Blogs and Other Dynamic Text Sources,
2006.

[89] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7553,
pp. 436–444, May 2015.

[90] A. Saeedi, E. Peukert, and E. Rahm, “Incremental Multi-source Entity Resolution
for Knowledge Graph Completion,” in The Semantic Web, A. Harth, S. Kirrane,
A.-C. Ngonga Ngomo, et al., Eds., Springer, Cham, 2020, pp. 393–408, isbn:
978-3-030-49461-2. doi: 10.1007/978-3-030-49461-2_23.

[91] X. L. Dong, E. Gabrilovich, G. Heitz, et al., “From Data Fusion to Knowledge
Fusion,” Proceedings of the VLDB Endowment, vol. 7, no. 10, pp. 881–892, Jun.
2014, issn: 2150-8097. doi: 10.14778/2732951.2732962.

[92] J. Bleiholder and F. Naumann, “Data fusion,” ACM Computing Surveys, vol. 41,
no. 1, pp. 1–41, Jan. 15, 2009, issn: 0360-0300. doi: 10.1145/1456650.1456651.

[93] Y. Elmougy and L. Liu, “Demystifying Fraudulent Transactions and Illicit Nodes
in the Bitcoin Network for Financial Forensics,” in Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach CA
USA: Association for Computing Machinery, Aug. 6, 2023, pp. 3979–3990. doi:
10.1145/3580305.3599803.

[94] J. Wu, J. Liu, Y. Zhao, and Z. Zheng, “Analysis of Cryptocurrency Transactions
from a Network Perspective: An Overview,” Journal of Network and Computer
Applications, vol. 190, p. 103 139, Sep. 15, 2021, issn: 1084-8045. doi: 10.1016/j.
jnca.2021.103139.

[95] D. Ron and A. Shamir. “Quantitative Analysis of the Full Bitcoin Transaction
Graph.” (2012), [Online]. Available: https://eprint.iacr.org/2012/584
(visited on 03/05/2024).

[96] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun, “Evalu-
ating User Privacy in Bitcoin,” in Financial Cryptography and Data Security: 17th
International Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected
Papers 17, Springer, 2013, pp. 34–51.

[97] J. D. Nick, “Data-Driven De-Anonymization in Bitcoin,” M.S. thesis, ETH-Zürich,
2015. doi: 10.3929/ETHZ-A-010541254.

[98] Y. Zhang, J. Wang, and J. Luo, “Heuristic-Based Address Clustering in Bitcoin,”
IEEE Access, vol. 8, pp. 210 582–210 591, 2020, issn: 2169-3536. doi: 10.1109/
ACCESS.2020.3039570. [Online]. Available: https://ieeexplore.ieee.org/
document/9265226/ (visited on 12/03/2023).

[99] F. Victor, “Address Clustering Heuristics for Ethereum,” in Financial Cryptog-
raphy and Data Security, J. Bonneau and N. Heninger, Eds., vol. 12059, Cham:

BIBLIOGRAPHY 92

https://doi.org/10.1007/978-3-030-49461-2_23
https://doi.org/10.14778/2732951.2732962
https://doi.org/10.1145/1456650.1456651
https://doi.org/10.1145/3580305.3599803
https://doi.org/10.1016/j.jnca.2021.103139
https://doi.org/10.1016/j.jnca.2021.103139
https://eprint.iacr.org/2012/584
https://doi.org/10.3929/ETHZ-A-010541254
https://doi.org/10.1109/ACCESS.2020.3039570
https://doi.org/10.1109/ACCESS.2020.3039570
https://ieeexplore.ieee.org/document/9265226/
https://ieeexplore.ieee.org/document/9265226/

Philipp Stangl Master’s Thesis

Springer International Publishing, 2020, pp. 617–633, isbn: 978-3-030-51280-4.
doi: 10.1007/978-3-030-51280-4_33.

[100] M. Wang, H. Ichijo, and B. Xiao. “Cryptocurrency Address Clustering and
Labeling.” arXiv: 2003.13399 [cs.CR]. (Mar. 30, 2020).

[101] H. Yousaf, G. Kappos, and S. Meiklejohn, “Tracing Transactions Across Cryp-
tocurrency Ledgers,” in 28th USENIX Security Symposium (USENIX Security 19),
Santa Clara, CA, Aug. 2019, pp. 837–850, isbn: 978-1-939133-06-9.

[102] E. Voorhees. “Shapeshift: An open source platform to trade, track, buy, and
earn.,” ShapeShift. (2023), [Online]. Available: https://shapeshift.com/ (vis-
ited on 12/21/2023).

[103] K. Gladych. “Changelly: A Cryptocurrency Exchange Platform.” (2023), [Online].
Available: https://changelly.com/ (visited on 12/21/2023).

[104] Arkham Intelligence, “Arkham: A Platform for Deanonymizing the Blockchain,”
Arkham Intelligence, White Paper, Jul. 4, 2023. [Online]. Available: https:
//assets- global.website- files.com/62879326fd745f7489b43224/64abc
4471879916bc4e2aeb0_Arkham_Whitepaper_FINAL.pdf (visited on 03/15/2024).

[105] T. Pham and S. Lee. “Anomaly Detection in the Bitcoin System - A Network
Perspective.” arXiv: 1611.03942 [cs.SI]. (Nov. 12, 2016).

[106] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting Ponzi
Schemes on Ethereum: Towards Healthier Blockchain Technology,” in Proceed-
ings of the 2018 World Wide Web Conference, ser. WWW ’18, Republic and Canton
of Geneva, CHE: International World Wide Web Conferences Steering Com-
mittee, 2018, pp. 1409–1418, isbn: 978-1-4503-5639-8. doi: 10.1145/3178876.
3186046. [Online]. Available: https://doi.org/10.1145/3178876.3186046.

[107] L. Chen, J. Peng, Y. Liu, J. Li, F. Xie, and Z. Zheng, “Phishing Scams Detection
in Ethereum Transaction Network,” ACM Transactions on Internet Technology,
vol. 21, no. 1, pp. 1–16, Feb. 28, 2021, issn: 1533-5399. doi: 10.1145/3398071.

[108] D. S. H. Tam, W. C. Lau, B. Hu, Q. F. Ying, D. M. Chiu, and H. Liu. “Identifying
Illicit Accounts in Large Scale E-payment Networks–A Graph Representation
Learning Approach.” arXiv: 1906.05546 [cs.SI]. (Jun. 13, 2019).

[109] D. Lin, J. Wu, Q. Yuan, and Z. Zheng, “T-Edge: Temporal Weighted Multidigraph
Embedding for Ethereum Transaction Network Analysis,” Frontiers in Physics,
vol. 8, p. 204, 2020.

[110] Y. Hu, S. Seneviratne, K. Thilakarathna, K. Fukuda, and A. Seneviratne. “Char-
acterizing and Detecting Money Laundering Activities on the Bitcoin Network.”
arXiv: 1912.12060 [cs.SI]. (Dec. 27, 2019).

[111] C. G. Akcora, Y. Li, Y. R. Gel, and M. Kantarcioglu, “BitcoinHeist: Topological
Data Analysis for Ransomware Prediction on the Bitcoin Blockchain,” in Pro-
ceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20, C. Bessiere, Ed., Special Track on AI in FinTech, International Joint
Conferences on Artificial Intelligence Organization, Jul. 2020, pp. 4439–4445.
doi: 10.24963/ijcai.2020/612. [Online]. Available: https://doi.org/10.
24963/ijcai.2020/612.

BIBLIOGRAPHY 93

https://doi.org/10.1007/978-3-030-51280-4_33
https://arxiv.org/abs/2003.13399
https://shapeshift.com/
https://changelly.com/
https://assets-global.website-files.com/62879326fd745f7489b43224/64abc4471879916bc4e2aeb0_Arkham_Whitepaper_FINAL.pdf
https://assets-global.website-files.com/62879326fd745f7489b43224/64abc4471879916bc4e2aeb0_Arkham_Whitepaper_FINAL.pdf
https://assets-global.website-files.com/62879326fd745f7489b43224/64abc4471879916bc4e2aeb0_Arkham_Whitepaper_FINAL.pdf
https://arxiv.org/abs/1611.03942
https://doi.org/10.1145/3178876.3186046
https://doi.org/10.1145/3178876.3186046
https://doi.org/10.1145/3178876.3186046
https://doi.org/10.1145/3398071
https://arxiv.org/abs/1906.05546
https://arxiv.org/abs/1912.12060
https://doi.org/10.24963/ijcai.2020/612
https://doi.org/10.24963/ijcai.2020/612
https://doi.org/10.24963/ijcai.2020/612

Philipp Stangl Master’s Thesis

[112] R. Moody. “Worldwide crypto & NFT Rug Pulls and scams tracker.” (Nov. 2023),
[Online]. Available: https://www.comparitech.com/crypto/cryptocurrency-
scams/ (visited on 11/19/2023).

[113] C. P. Neumann and R. Lenz, “The alpha-Flow Use-Case of Breast Cancer
Treatment – Modeling Inter-Institutional Healthcare Workflows by Active Docu-
ments,” in Proc of the 19th Int’l Workshops on Enabling Technologies: Infrastructures
for Collaborative Enterprises (WETICE 2010), Larissa, GR, Jun. 2010, pp. 12–22.
doi: 10.1109/WETICE.2010.8.

[114] C. P. Neumann, “Distributed Document-Oriented Process Management in
Healthcare,” Ph.D. dissertation, Friedrich-Alexander-Universität Erlangen-Nürn-
berg, Erlangen, Nov. 2012. doi: 10.13140/RG.2.2.14719.79521. [Online].
Available: https://nbn-resolving.org/urn:nbn:de:bvb:29-opus-39070.

[115] Zachxbt. “@homer_eth Rug Pull Analysis,” X (formerly Twitter). (May 26, 2022),
[Online]. Available: https://x.com/zachxbt/status/1529973318563946496
(visited on 12/05/2023).

[116] Consensys. “MetaMask: A Crypto Wallet & Gateway to Blockchain Apps.”
(2023), [Online]. Available: https://metamask.io/ (visited on 12/15/2023).

[117] P. Stangl and C. P. Neumann, “The Kosmosis Use-Case of Crypto Rug Pull
Detection and Prevention,” Ostbayerische Technische Hochschule Amberg-
Weiden, Technical Report CL-2024-01, Feb. 2024.

[118] The Apache Software Foundation. “Apache Jena - TDB,” The Apache Software
Foundation. (2024), [Online]. Available: https://jena.apache.org/documenta
tion/tdb/index.html (visited on 01/04/2024).

[119] Ontotext. “Ontotext GraphDB,” Ontotext. (2024), [Online]. Available: https:
//www.ontotext.com/products/graphdb/ (visited on 01/10/2024).

[120] O. Erling, “Virtuoso, a Hybrid RDBMS/Graph Column Store,” IEEE Data
Engineering Bulletin, vol. 35, no. 1, pp. 3–8, 2012.

[121] A. Chernysheva, J. Götz, A. Imeraj, P. Korinth, P. Stangl, and C. P. Neumann,
“SGDb Semantic Video Game Database: Svelte- und Ontotext-basierte Weban-
wendung mit einer Graphen-Suche für Videospiele,” Ostbayerische Technische
Hochschule Amberg-Weiden, Technical Report, Mar. 1, 2023. doi: 10.13140/RG.
2.2.11272.60160.

[122] Sourcify. “Sourcify: Source-verified smart contracts for transparency and better
UX in web3.” (2023), [Online]. Available: https://sourcify.dev/ (visited on
12/07/2023).

[123] F. A. Manzano and J. Little. “Pyevmasm: Ethereum Virtual Machine Disassem-
bler and Assembler.” (2024), [Online]. Available: https://github.com/crytic/
pyevmasm (visited on 01/25/2024).

[124] Cyble. “New Laplas Clipper Distributed via SmokeLoader.” (Nov. 2, 2022),
[Online]. Available: https://cyble.com/blog/new-laplas-clipper-distribu
ted-by-smokeloader/ (visited on 12/18/2023).

[125] F. N. Al-Aswadi, H. Y. Chan, and K. H. Gan, “Automatic ontology construction
from text: A review from shallow to deep learning trend,” Artificial Intelligence
Review, vol. 53, no. 6, pp. 3901–3928, 2020.

BIBLIOGRAPHY 94

https://www.comparitech.com/crypto/cryptocurrency-scams/
https://www.comparitech.com/crypto/cryptocurrency-scams/
https://doi.org/10.1109/WETICE.2010.8
https://doi.org/10.13140/RG.2.2.14719.79521
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus-39070
https://x.com/zachxbt/status/1529973318563946496
https://metamask.io/
https://jena.apache.org/documentation/tdb/index.html
https://jena.apache.org/documentation/tdb/index.html
https://www.ontotext.com/products/graphdb/
https://www.ontotext.com/products/graphdb/
https://doi.org/10.13140/RG.2.2.11272.60160
https://doi.org/10.13140/RG.2.2.11272.60160
https://sourcify.dev/
https://github.com/crytic/pyevmasm
https://github.com/crytic/pyevmasm
https://cyble.com/blog/new-laplas-clipper-distributed-by-smokeloader/
https://cyble.com/blog/new-laplas-clipper-distributed-by-smokeloader/

Philipp Stangl Master’s Thesis

[126] H. Jelodar, Y. Wang, C. Yuan, et al., “Latent Dirichlet allocation (LDA) and topic
modeling: Models, applications, a survey,” Multimedia Tools and Applications,
vol. 78, pp. 15 169–15 211, Nov. 28, 2019. doi: 10.1007/s11042-018-6894-4.

[127] A. Lutov, S. Roshankish, M. Khayati, and P. Cudré-Mauroux, “StaTIX - Statistical
Type Inference on Linked Data,” in 2018 IEEE International Conference on Big
Data (Big Data), IEEE, 2018, pp. 2253–2262.

[128] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for relation
extraction without labeled data,” in Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, Aug. 2009, pp. 1003–1011.

BIBLIOGRAPHY 95

https://doi.org/10.1007/s11042-018-6894-4

Philipp Stangl Master’s Thesis

Glossary

Name Description Symbol Def

ABI Application Binary Interface – Interface between
the high-level code of the smart contract
and the low-level binary interaction on the
blockchain. It defines how data is formatted
and how to call smart contract functions.

3.3

API Application Programming Interface – Defines the
methods and data formats for requests and
responses, enabling developers to access and
use functionalities of external software.

2.2

CQ Competency Question – Specific questions that
define the scope and requirements that a
knowledge graph should be able to answer
or address.

2.1

DeFi Decentralized Finance – A financial system that
operates without centralized intermediaries
such as banks. Instead, individuals engage in
peer-to-peer financial transactions.

3.2

ECDSA Elliptic Curve Digital Signature Algorithm – A
cryptographic algorithm used to generate and
verify digital signatures based on elliptic curve
cryptography.

3.3

EOA Externally Owned Account – A type of
blockchain account that can send transactions
on a blockchain and is managed by its owner,
who holds the private key.

3.4

EVM Ethereum Virtual Machine – A decentralized
virtual computer for executing smart contracts
on the blockchain.

3.3

96

Philipp Stangl Master’s Thesis

Name Description Symbol Def

GCN Graph Convolutional Network – A type of neural
network designed to work with graph data. It
generalizes the convolutional operation from
grid data (like images) to graph data, enabling
feature learning directly on graphs.

4.2

KG Knowledge Graph – A graph that consists of
semantically described entities, each with a
unique identifier, and relations among those
entities using an ontological representation.

1.0

Kosmosis A portmanteau of the words “knowledge”
and “osmosis.” Kosmosis incrementally fuses
knowledge from heterogeneous data sources
into a knowledge graph.

1.0

LPG Labeled Property Graph – A data structure used
in graph databases where each node (entity)
and edge (relationship) can have zero or more
labels that categorize their types as well as
properties in the form of key-value pairs.

3.1

NER Named Entity Recognition – Identifies mentions
of named entities in an input text, demarcating
mentions of people, organizations, locations,
and other types of entities.

4.1

NFT Non-Fungible Token – A unique digital asset
that proves ownership and authenticity of a
digital or real-world asset. Each NFT has a
distinct value and cannot be exchanged on a
one-to-one basis with other tokens.

3.2

Object The object in an RDF triple is the value or
resource that is related to the subject by the
predicate. The object can be another resource,
or it can be a literal value.

o 3.1

OOD Object-Oriented Design – Planning a system of
interacting objects for the purpose of solving
a software problem.

2.2

OOP Object-Oriented Programming – Programming
paradigm based on the concept of objects,
which can contain data and code.

2.2

OWL Web Ontology Language – Designed by the W3C.
A semantic web language for defining and
instantiating web ontologies.

3.1

Glossary 97

Philipp Stangl Master’s Thesis

Name Description Symbol Def

P2PKH Pay-to-PubKey Hash – A type of ScriptPubKey
which locks UTXOs to the hash of a public
key, instead of the public key itself.

4.2

P2SH Pay-to-Script Hash – Locking script that allows
to send a UTXO to an address and lock them
using a custom locking script.

4.2

POS Part-of-Speech tagging – Marking up a word in
a text (corpus) as corresponding to a particular
part of speech, based on both its definition and
its context.

4.1

Predicate The predicate in an RDF triple represents the
relationship that connects the subject to the
object.

p 3.1

RDF Resource Description Framework – The data
exchange standard developed by the World
Wide Web Consortium (W3C) for describing
resources on the world wide web.

2.2

RDFS RDF Schema – A semantic extension of RDF
that provides mechanisms for describing
groups of related resources and the relation-
ships between these resources.

3.1

RWE Real-World Entity – A person or organization
of the real world.

RWE 1.1

SHA Secure Hash Algorithm – A cryptographic hash
function that takes an input (or message) and
returns a fixed-size string of bytes. It should
be practically impossible to generate the same
return value with a different input message
(collision resistance).

3.3

SHACL Shape Constraint Language – Schema language
to set conditions an RDF graph must fulfill.

3.1

ShEx Shape Expressions – A high-level language for
validating and describing RDF data structures.

3.1

SPARQL SPARQL Protocol And RDF Query Language – It
is used to retrieve and manipulate data stored
in RDF format.

3.1

Subject The subject in an RDF triple is the entity or
resource. It is typically represented by a URI
that uniquely identifies a resource.

s 3.1

Glossary 98

Philipp Stangl Master’s Thesis

Name Description Symbol Def

TDD Test-Driven Development – Development and
design paradigm where test cases are defined
before the actual code is written to ensure
code quality and reliability.

2.2

UML Unified Modeling Language – A standardized
modeling language used to visualize, specify,
and document software system artifacts.

2.2

URI Uniform Resource Identifier – An identifier that
is a unique sequence of characters used to
identify a resource.

3.1

UTXO Unspent Transaction Output - An accounting
model used in blockchains like Bitcoin in
which each unit of currency is treated as an
individual UTXO, similar to cash. When a
transaction is executed, it consumes one or
more existing UTXOs as inputs and creates
new UTXOs as outputs.

3.4

Glossary 99

Philipp Stangl Master’s Thesis

List of Figures

1.1 Total cryptocurrency value received by illicit addresses from 2017 to
2022. Adopted from Grauer et al. [1] . 2

1.2 Thesis structure . 4

2.1 UML class diagram of the singleton pattern 7
2.2 UML class diagram of the factory method pattern 8
2.3 UML class diagram of the strategy pattern 8

3.1 John Doe bank account example modeled as LPG 12
3.2 John Doe bank account example modeled as RDF graph 14
3.3 Overview of different types of crypto assets 15
3.4 Blockchain datastructure. Adapted from Zheng et al. [62] 17
3.5 Schematic representation of deploying and reading from smart contracts.

Adapted from Takeuchi [68] . 18
3.6 Transaction between Alice and Bob using ETH within the account-based

model . 19
3.7 Transaction between Alice and Bob using BTC within the UTXO model 20
3.8 Process of Tornado Cash coin mixing. Adopted from Tang et al. [72] . . 22
3.9 Two individual transactions on the left are combined into a CoinJoin

transaction on the right. Adopted from Möser and Böhme [80] 23

4.1 Illustration of the named entity recognition task. Adapted from Li et al.
[84] . 25

4.2 Illustration of the relation extraction task 26
4.3 Illustration of the entity resolution task. Adopted from Hofer et al. [4] . 28
4.4 Overview of the different types of blockchain graph models 29
4.5 Illustration of the common-input-ownership heuristic 30
4.6 Illustration of the equal-output CoinJoin heuristic 31
4.7 An illustration of the script type heuristic 32
4.8 Illustration of the deposit address reuse heuristic, adopted from Vic-

tor [99], and extended with the fund-gathering pattern by Wang et al.
[100]. Colors indicate the same real-world entity. Arrows indicate the
flow of crypto assets between blockchain addresses. 34

4.9 Illustration of the airdrop multi-participation heuristic. Colors indicate
the same real-world entity. Adopted from Victor [99] 35

4.10 Cross-chain transaction patterns. Adopted from Yousaf et al. [101] . . . 37

100

Philipp Stangl Master’s Thesis

4.11 Reactor blockchain forensic software by Chainalysis 38

5.1 Rug pulls and scams since 2017, using data from comparitech [112] . . 41
5.2 Simplified transaction graph of Homer_eth’s NFT rug pulls, showing

only transactions that are directly related to the rug pulls 42
5.3 KG of Homer_eth’s NFT rug pulls . 44

6.1 Overview of Kosmosis, the incremental KG construction pipeline 49
6.2 Illustration of the blockchain account concept 50
6.3 Illustration of the blockchain transaction concept 52
6.4 Illustration of the social media account concept 53
6.5 Illustration of the real-world entity concept 54
6.6 UML class diagram for the pipeline . 55
6.7 UML class diagram of the concrete ingestion strategies 55
6.8 UML class diagram of the blockchain data-processing workflow 56
6.9 Illustration of address coexistence on EVM-compatible blockchains . . . 63
6.10 UML class diagram for the text-data processing workflow 69
6.11 Text-processing example of the Ether Reapers announcement post . . . 69

LIST OF FIGURES 101

Philipp Stangl Master’s Thesis

List of Listings

6.1 Transaction on the Ethereum blockchain 57
6.2 Processed transaction after address relation extraction and tagging . . . 60
6.3 The final processing result after entity resolution 67
6.4 Golden KG response for the real-world entity Coinbase 71

A.1 Contract creation transaction on the Ethereum blockchain 83
A.2 Transaction receipt for the contract creation transaction 84
A.3 UTXO transaction with one input and two outputs 85

102

Philipp Stangl Master’s Thesis

List of Tables

2.1 Blockchain dataset used for evaluation 10

3.1 Overview of crypto asset fraud categories 16

5.1 Rug pull projects by Homer_eth . 41

6.1 Regular expressions for extracting blockchain addresses 68
6.2 Attribution examples for Ethereum blockchain addresses 70

7.1 Competency question evaluation results. ● - Fulfilled; ◗ - Partially fulfilled 73
7.2 Comparison between the constructed knowledge graph and transaction

graphs . 74

103

	Introduction
	Motivation
	Problem Statement and Objectives
	Thesis Structure

	Methods
	Ontology Development
	Prototype Design and Implementation
	Architecture Design
	Test-Driven Development
	Data Acquisition

	Evaluation Methodology and Dataset

	Fundamentals
	Knowledge Graphs
	Labeled Property Graph
	Graphs Based on the RDF Data Model
	Graph Model Selection

	Crypto Assets
	Crypto Asset Types and Use Cases
	Minting Crypto Assets
	Fraud Categories

	Blockchain Technology
	Blockchain Data Structure
	Smart Contracts

	Blockchain Accounting
	Account-based Model
	Unspent Transaction Output Model

	Privacy Techniques Used in Blockchain
	Accounting Model Privacy
	Cooperative Obfuscation

	State of the Art
	Incremental Knowledge Graph Construction
	Knowledge Extraction
	Knowledge Processing
	Ontology Development

	Graph-based Blockchain Data Mining
	Blockchain Address Deanonymization
	Transaction Pattern Recognition
	Illicit Activity Detection

	Summary

	Rug Pull Prevention Use Case
	Past User Story
	From Transaction Graph to Knowledge Graph
	Alternative User Story
	Technical Implications
	Competency Questions
	Functional Requirements
	Nonfunctional Requirements

	Kosmosis Approach
	Architectural Overview of Kosmosis
	Knowledge Graph Ontology
	Blockchain Account Concept
	Blockchain Transaction Concept
	Social Media Account Concept
	Real-World Entity Concept

	The Knowledge Graph Construction Pipeline
	Blockchain Data-Processing Workflow
	Address Relation Extraction
	Address Tagging
	Blockchain Entity Resolution
	RDF Mapping

	Text-Processing Workflow
	Enrichment Data-Processing Workflows
	Attributions
	External Knowledge Base

	Summary

	Evaluation
	Fitness for Use
	Comparison with Transaction Graphs
	Limitations
	Summary

	Future Work
	Implementational Features
	Ontology Learning
	Quality Assurance

	Rug Pull Detection and Prevention
	Rug Pull Detection Algorithms
	Rug Pull Prevention Methods

	Conclusion
	Supplementary Material
	Bibliography
	Glossary
	List of Figures
	List of Listings
	List of Tables

